Revisiting Physically Realizable Adversarial Object Attack against LiDAR-based Detection: Clarifying Problem Formulation and Experimental Protocols
- URL: http://arxiv.org/abs/2507.18457v1
- Date: Thu, 24 Jul 2025 14:37:00 GMT
- Title: Revisiting Physically Realizable Adversarial Object Attack against LiDAR-based Detection: Clarifying Problem Formulation and Experimental Protocols
- Authors: Luo Cheng, Hanwei Zhang, Lijun Zhang, Holger Hermanns,
- Abstract summary: Adrial robustness in 3D object detection is a critical research area due to its widespread application in real-world scenarios.<n>We propose a device-agnostic, standardized framework that abstracts key elements of physical adversarial object attacks.<n>We offer insights into factors influencing attack success and advance understanding of adversarial robustness in real-world LiDAR perception.
- Score: 11.792107959683925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial robustness in LiDAR-based 3D object detection is a critical research area due to its widespread application in real-world scenarios. While many digital attacks manipulate point clouds or meshes, they often lack physical realizability, limiting their practical impact. Physical adversarial object attacks remain underexplored and suffer from poor reproducibility due to inconsistent setups and hardware differences. To address this, we propose a device-agnostic, standardized framework that abstracts key elements of physical adversarial object attacks, supports diverse methods, and provides open-source code with benchmarking protocols in simulation and real-world settings. Our framework enables fair comparison, accelerates research, and is validated by successfully transferring simulated attacks to a physical LiDAR system. Beyond the framework, we offer insights into factors influencing attack success and advance understanding of adversarial robustness in real-world LiDAR perception.
Related papers
- AdvReal: Adversarial Patch Generation Framework with Application to Adversarial Safety Evaluation of Object Detection Systems [3.1980492662961515]
In this study, we propose a unified joint adversarial training framework for both 2D and 3D samples.<n>We introduce an adversarial sample reality enhancement approach that incorporates non-rigid surface modeling and a realistic 3D matching mechanism.
arXiv Detail & Related papers (2025-05-22T08:54:03Z) - Defense against Joint Poison and Evasion Attacks: A Case Study of DERMS [2.632261166782093]
We propose the first framework of IDS that is robust against joint poisoning and evasion attacks.
We verify the robustness of our method on the IEEE-13 bus feeder model against a diverse set of poisoning and evasion attack scenarios.
arXiv Detail & Related papers (2024-05-05T16:24:30Z) - ADoPT: LiDAR Spoofing Attack Detection Based on Point-Level Temporal
Consistency [11.160041268858773]
Deep neural networks (DNNs) are increasingly integrated into LiDAR-based perception systems for autonomous vehicles (AVs)
We aim to address the challenge of LiDAR spoofing attacks, where attackers inject fake objects into LiDAR data and fool AVs to misinterpret their environment and make erroneous decisions.
We propose ADoPT (Anomaly Detection based on Point-level Temporal consistency), which quantitatively measures temporal consistency across consecutive frames and identifies abnormal objects based on the coherency of point clusters.
In our evaluation using the nuScenes dataset, our algorithm effectively counters various LiDAR spoofing attacks, achieving a low (
arXiv Detail & Related papers (2023-10-23T02:31:31Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - X-Adv: Physical Adversarial Object Attacks against X-ray Prohibited Item
Detection [113.10386151761682]
Adversarial attacks targeting texture-free X-ray images are underexplored.
In this paper, we take the first step toward the study of adversarial attacks targeted at X-ray prohibited item detection.
We propose X-Adv to generate physically printable metals that act as an adversarial agent capable of deceiving X-ray detectors.
arXiv Detail & Related papers (2023-02-19T06:31:17Z) - A Comprehensive Study of the Robustness for LiDAR-based 3D Object
Detectors against Adversarial Attacks [84.10546708708554]
3D object detectors are increasingly crucial for security-critical tasks.
It is imperative to understand their robustness against adversarial attacks.
This paper presents the first comprehensive evaluation and analysis of the robustness of LiDAR-based 3D detectors under adversarial attacks.
arXiv Detail & Related papers (2022-12-20T13:09:58Z) - Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion
based Perception in Autonomous Driving Under Physical-World Attacks [62.923992740383966]
We present the first study of security issues of MSF-based perception in AD systems.
We generate a physically-realizable, adversarial 3D-printed object that misleads an AD system to fail in detecting it and thus crash into it.
Our results show that the attack achieves over 90% success rate across different object types and MSF.
arXiv Detail & Related papers (2021-06-17T05:11:07Z) - Exploring Adversarial Robustness of Multi-Sensor Perception Systems in
Self Driving [87.3492357041748]
In this paper, we showcase practical susceptibilities of multi-sensor detection by placing an adversarial object on top of a host vehicle.
Our experiments demonstrate that successful attacks are primarily caused by easily corrupted image features.
Towards more robust multi-modal perception systems, we show that adversarial training with feature denoising can boost robustness to such attacks significantly.
arXiv Detail & Related papers (2021-01-17T21:15:34Z) - Understanding Object Detection Through An Adversarial Lens [14.976840260248913]
This paper presents a framework for analyzing and evaluating vulnerabilities of deep object detectors under an adversarial lens.
We demonstrate that the proposed framework can serve as a methodical benchmark for analyzing adversarial behaviors and risks in real-time object detection systems.
We conjecture that this framework can also serve as a tool to assess the security risks and the adversarial robustness of deep object detectors to be deployed in real-world applications.
arXiv Detail & Related papers (2020-07-11T18:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.