Deep Variational Free Energy Calculation of Hydrogen Hugoniot
- URL: http://arxiv.org/abs/2507.18540v1
- Date: Thu, 24 Jul 2025 16:07:13 GMT
- Title: Deep Variational Free Energy Calculation of Hydrogen Hugoniot
- Authors: Zihang Li, Hao Xie, Xinyang Dong, Lei Wang,
- Abstract summary: We develop a deep variational free energy framework to compute the equation of state of hydrogen in the warm dense matter region.<n>This method parameterizes the variational density matrix of hydrogen nuclei and electrons at finite temperature using three deep generative models.
- Score: 4.265845580597826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a deep variational free energy framework to compute the equation of state of hydrogen in the warm dense matter region. This method parameterizes the variational density matrix of hydrogen nuclei and electrons at finite temperature using three deep generative models: a normalizing flow model that represents the Boltzmann distribution of the classical nuclei, an autoregressive transformer that models the distribution of electrons in excited states, and a permutational equivariant flow model that constructs backflow coordinates for electrons in Hartree-Fock orbitals. By jointly optimizing the three neural networks to minimize the variational free energy, we obtain the equation of state and related thermodynamic properties of dense hydrogen. We compare our results with other theoretical and experimental results on the deuterium Hugoniot curve, aiming to resolve existing discrepancies. The calculated results provide a valuable benchmark for deuterium in the warm dense matter region.
Related papers
- Vacuum polarization in a one-dimensional effective quantum-electrodynamics model [0.0]
We study a one-dimensional effective QED model of the hydrogen-like atom with delta-potential interactions.<n>This model resembles the three-dimensional effective QED theory with Coulomb interactions while being substantially simpler.
arXiv Detail & Related papers (2024-10-25T06:34:36Z) - Orbital-Free Density Functional Theory with Continuous Normalizing Flows [54.710176363763296]
Orbital-free density functional theory (OF-DFT) provides an alternative approach for calculating the molecular electronic energy.
Our model successfully replicates the electronic density for a diverse range of chemical systems.
arXiv Detail & Related papers (2023-11-22T16:42:59Z) - Message-Passing Neural Quantum States for the Homogeneous Electron Gas [41.94295877935867]
We introduce a message-passing-neural-network-based wave function Ansatz to simulate extended, strongly interacting fermions in continuous space.
We demonstrate its accuracy by simulating the ground state of the homogeneous electron gas in three spatial dimensions.
arXiv Detail & Related papers (2023-05-12T04:12:04Z) - Correlation energy of the paramagnetic electron gas at the thermodynamic
limit [0.0]
We calculate correlation energy of paramagnetic three-dimensional homogeneous electron gas at intermediate to high density.
Ground state energies in finite cells are determined using Slater-Jastrow-backflow trial wave functions.
Our correlation energies in the thermodynamic limit are lower (i.e., more negative, and therefore more accurate according to the variational principle) than previous results.
arXiv Detail & Related papers (2022-09-21T09:43:20Z) - Deep Variational Free Energy Approach to Dense Hydrogen [16.67522927286118]
We develop a deep generative model-based variational free energy approach to the equations of state of dense hydrogen.
Direct access to the entropy and free energy of dense hydrogen opens new opportunities in planetary modeling and high-pressure physics research.
arXiv Detail & Related papers (2022-09-13T15:47:21Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Equivariant Diffusion for Molecule Generation in 3D [74.289191525633]
This work introduces a diffusion model for molecule computation generation in 3D that is equivariant to Euclidean transformations.
Experimentally, the proposed method significantly outperforms previous 3D molecular generative methods regarding the quality of generated samples and efficiency at training time.
arXiv Detail & Related papers (2022-03-31T12:52:25Z) - Normalizing flows for atomic solids [67.70049117614325]
We present a machine-learning approach, based on normalizing flows, for modelling atomic solids.
We report Helmholtz free energy estimates for cubic and hexagonal ice modelled as monatomic water as well as for a truncated and shifted Lennard-Jones system.
Our results thus demonstrate that normalizing flows can provide high-quality samples and free energy estimates of solids, without the need for multi-staging or for imposing restrictions on the crystal geometry.
arXiv Detail & Related papers (2021-11-16T18:54:49Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - E(n) Equivariant Normalizing Flows for Molecule Generation in 3D [87.12477361140716]
This paper introduces a generative model equivariant to Euclidean symmetries: E(n) Equivariant Normalizing Flows (E-NFs)
To the best of our knowledge, this is the first likelihood-based deep generative model that generates molecules in 3D.
arXiv Detail & Related papers (2021-05-19T09:28:54Z) - Thermal Properties of Deng-Fan-Eckart Potential model using Poisson
Summation Approach [0.0]
The Deng-Fan-Eckart potential is as good as the Morse potential in studying atomic interaction in diatomic molecules.
The thermodynamic properties of some selected diatomic molecules(H2, CO, and ScN ) were obtained using Poisson summation method.
arXiv Detail & Related papers (2020-09-19T20:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.