Unposed 3DGS Reconstruction with Probabilistic Procrustes Mapping
- URL: http://arxiv.org/abs/2507.18541v1
- Date: Thu, 24 Jul 2025 16:08:01 GMT
- Title: Unposed 3DGS Reconstruction with Probabilistic Procrustes Mapping
- Authors: Chong Cheng, Zijian Wang, Sicheng Yu, Yu Hu, Nanjie Yao, Hao Wang,
- Abstract summary: We propose a novel unposed 3DGS reconstruction framework that integrates pretrained MVS priors with the probabilistic Procrustes mapping strategy.<n>We show that our method achieves accurate reconstruction from unposed image sequences, setting a new state of the art for unposed 3DGS reconstruction.
- Score: 10.88046882501116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D Gaussian Splatting (3DGS) has emerged as a core technique for 3D representation. Its effectiveness largely depends on precise camera poses and accurate point cloud initialization, which are often derived from pretrained Multi-View Stereo (MVS) models. However, in unposed reconstruction task from hundreds of outdoor images, existing MVS models may struggle with memory limits and lose accuracy as the number of input images grows. To address this limitation, we propose a novel unposed 3DGS reconstruction framework that integrates pretrained MVS priors with the probabilistic Procrustes mapping strategy. The method partitions input images into subsets, maps submaps into a global space, and jointly optimizes geometry and poses with 3DGS. Technically, we formulate the mapping of tens of millions of point clouds as a probabilistic Procrustes problem and solve a closed-form alignment. By employing probabilistic coupling along with a soft dustbin mechanism to reject uncertain correspondences, our method globally aligns point clouds and poses within minutes across hundreds of images. Moreover, we propose a joint optimization framework for 3DGS and camera poses. It constructs Gaussians from confidence-aware anchor points and integrates 3DGS differentiable rendering with an analytical Jacobian to jointly refine scene and poses, enabling accurate reconstruction and pose estimation. Experiments on Waymo and KITTI datasets show that our method achieves accurate reconstruction from unposed image sequences, setting a new state of the art for unposed 3DGS reconstruction.
Related papers
- A Constrained Optimization Approach for Gaussian Splatting from Coarsely-posed Images and Noisy Lidar Point Clouds [37.043012716944496]
We introduce a constrained optimization method for simultaneous camera pose estimation and 3D reconstruction.<n> Experiments demonstrate that the proposed method significantly outperforms the existing (multi-modal) 3DGS baseline.
arXiv Detail & Related papers (2025-04-12T08:34:43Z) - Sparse-view Pose Estimation and Reconstruction via Analysis by Generative Synthesis [25.898616784744377]
Given a sparse set of observed views, the observations may not provide sufficient direct evidence to obtain complete and accurate 3D.<n>We propose SparseAGS, a method that adapts this analysis-by-synthesis approach by: a) including novel-view-synthesis-based generative priors in conjunction with photometric objectives to improve the quality of the inferred 3D, and b) explicitly reasoning about outliers and using a discrete search with a continuous optimization-based strategy to correct them.
arXiv Detail & Related papers (2024-12-04T18:59:24Z) - USP-Gaussian: Unifying Spike-based Image Reconstruction, Pose Correction and Gaussian Splatting [45.246178004823534]
Spike cameras, as an innovative neuromorphic camera that captures scenes with the 0-1 bit stream at 40 kHz, are increasingly employed for the 3D reconstruction task.<n>Previous spike-based 3D reconstruction approaches often employ a casecased pipeline.<n>We propose a synergistic optimization framework, textbfUSP-Gaussian, that unifies spike-based image reconstruction, pose correction, and Gaussian splatting into an end-to-end framework.
arXiv Detail & Related papers (2024-11-15T14:15:16Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
arXiv Detail & Related papers (2024-10-31T17:58:22Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.<n>Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - InstantSplat: Sparse-view Gaussian Splatting in Seconds [91.77050739918037]
We introduce InstantSplat, a novel approach for addressing sparse-view 3D scene reconstruction at lightning-fast speed.<n>InstantSplat employs a self-supervised framework that optimize 3D scene representation and camera poses.<n>It achieves an acceleration of over 30x in reconstruction and improves visual quality (SSIM) from 0.3755 to 0.7624 compared to traditional SfM with 3D-GS.
arXiv Detail & Related papers (2024-03-29T17:29:58Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.