論文の概要: Efficient Knowledge Tracing Leveraging Higher-Order Information in Integrated Graphs
- arxiv url: http://arxiv.org/abs/2507.18668v1
- Date: Thu, 24 Jul 2025 06:12:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.697309
- Title: Efficient Knowledge Tracing Leveraging Higher-Order Information in Integrated Graphs
- Title(参考訳): 統合グラフにおける高次情報を活用した効率的な知識追跡
- Authors: Donghee Han, Daehee Kim, Minjun Lee, Daeyoung Roh, Keejun Han, Mun Yong Yi,
- Abstract要約: DGAKT(Dual Graph Attention-based Knowledge Tracing)を導入する。
これは、学生-運動-KC関係を表すサブグラフからの高次情報を活用するように設計されたグラフニューラルネットワークモデルである。
完全なグローバルグラフモデルと比較して、メモリと計算の要求が大幅に削減される。
- 参考スコア(独自算出の注目度): 2.4134741591214808
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rise of online learning has led to the development of various knowledge tracing (KT) methods. However, existing methods have overlooked the problem of increasing computational cost when utilizing large graphs and long learning sequences. To address this issue, we introduce Dual Graph Attention-based Knowledge Tracing (DGAKT), a graph neural network model designed to leverage high-order information from subgraphs representing student-exercise-KC relationships. DGAKT incorporates a subgraph-based approach to enhance computational efficiency. By processing only relevant subgraphs for each target interaction, DGAKT significantly reduces memory and computational requirements compared to full global graph models. Extensive experimental results demonstrate that DGAKT not only outperforms existing KT models but also sets a new standard in resource efficiency, addressing a critical need that has been largely overlooked by prior KT approaches.
- Abstract(参考訳): オンライン学習の台頭は、様々な知識追跡(KT)手法の開発につながった。
しかし,従来の手法では,大きなグラフや長い学習シーケンスを利用する場合の計算コストの増大が問題視されている。
この問題に対処するために,DGAKT(Dual Graph Attention-Based Knowledge Tracing)を導入した。
DGAKTは、計算効率を向上させるためのサブグラフベースのアプローチを取り入れている。
DGAKTは、対象の相互作用ごとに関連する部分グラフのみを処理することにより、完全なグローバルグラフモデルと比較して、メモリと計算の要求を著しく削減する。
大規模な実験結果から、DGAKTは既存のKTモデルを上回るだけでなく、リソース効率の新たな標準も設定し、従来のKTアプローチでほとんど見落とされた重要なニーズに対処することを示した。
関連論文リスト
- Adversarial Curriculum Graph-Free Knowledge Distillation for Graph Neural Networks [61.608453110751206]
本稿では,グラフニューラルネットワークのための高速かつ高品質なデータフリー知識蒸留手法を提案する。
グラフフリーKD法(ACGKD)は擬似グラフの空間的複雑さを著しく低減する。
ACGKDは、生徒の次元を拡大することで、生徒と教師のモデル間の次元のあいまいさを取り除く。
論文 参考訳(メタデータ) (2025-04-01T08:44:27Z) - Community-Centric Graph Unlearning [10.906555492206959]
我々は、新しいグラフ構造マッピング・アンラーニング・パラダイム(GSMU)と、それに基づく新しい手法CGE(Community-centric Graph Eraser)を提案する。
CGEは、コミュニティのサブグラフをノードにマッピングすることで、少ないマップ付きグラフ内でノードレベルの未学習操作の再構築を可能にする。
論文 参考訳(メタデータ) (2024-08-19T05:37:35Z) - CORE: Data Augmentation for Link Prediction via Information Bottleneck [25.044734252779975]
リンク予測(LP)はグラフ表現学習の基本的な課題である。
LPモデルのコンパクトかつ予測的な拡張を学習するための新しいデータ拡張手法であるCOREを提案する。
論文 参考訳(メタデータ) (2024-04-17T03:20:42Z) - Efficient End-to-end Language Model Fine-tuning on Graphs [21.23522552579571]
Text-Attributed Graphs (TAGs) からの学習は、その幅広い現実世界のアプリケーションのために大きな注目を集めている。
我々は,TAG上での言語モデルのエンドツーエンドな微調整のための,新規かつ効率的なアプローチであるLEAdingを紹介する。
提案手法は,Ogbn-arxiv のリーダーボード上で,最先端のSOTA(State-of-the-art)を達成し,優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-07T22:35:16Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - Efficient Relation-aware Neighborhood Aggregation in Graph Neural Networks via Tensor Decomposition [4.041834517339835]
グラフ畳み込みネットワーク(R-GCN)の集約関数にテンソル分解を組み込んだ新しい知識グラフを提案する。
我々のモデルは、関係型によって定義される低ランクテンソルの射影行列を用いて、隣り合う実体の表現を強化する。
我々は,グラフ処理に固有の1-k-kエンコーダ法のトレーニング制限を緩和するために,コントラスト学習にインスパイアされたトレーニング戦略を採用する。
論文 参考訳(メタデータ) (2022-12-11T19:07:34Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
グラフ組み込み数ショット学習に関する包括的な研究を紹介します。
本稿では,ラベル間のグラフ情報の組み込みによる影響をより深く理解できるグラフ正規化手法を提案する。
提案手法は,Mini-ImageNetで最大2%,ImageNet-FSで6.7%の性能向上を実現する。
論文 参考訳(メタデータ) (2021-02-14T05:28:13Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
グラフ構造とグラフ埋め込みを協調的かつ反復的に学習するための、エンドツーエンドのグラフ学習フレームワーク、すなわち、IDGL(Iterative Deep Graph Learning)を提案する。
実験の結果,提案したIDGLモデルは,最先端のベースラインを一貫して上回る,あるいは一致させることができることがわかった。
論文 参考訳(メタデータ) (2020-06-21T19:49:15Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。