The Right to be Forgotten in Pruning: Unveil Machine Unlearning on Sparse Models
- URL: http://arxiv.org/abs/2507.18725v1
- Date: Thu, 24 Jul 2025 18:13:26 GMT
- Title: The Right to be Forgotten in Pruning: Unveil Machine Unlearning on Sparse Models
- Authors: Yang Xiao, Gen Li, Jie Ji, Ruimeng Ye, Xiaolong Ma, Bo Hui,
- Abstract summary: Machine unlearning aims to efficiently eliminate the memory about deleted data from trained models and address the right to be forgotten.<n>In this paper, we empirically find that the deleted data has an impact on the pruned topology in a sparse model.<n>Motivated by the observation and the right to be forgotten, we define a new terminology un-pruning" to eliminate the impact of deleted data on model pruning.
- Score: 18.728123679646398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine unlearning aims to efficiently eliminate the memory about deleted data from trained models and address the right to be forgotten. Despite the success of existing unlearning algorithms, unlearning in sparse models has not yet been well studied. In this paper, we empirically find that the deleted data has an impact on the pruned topology in a sparse model. Motivated by the observation and the right to be forgotten, we define a new terminology ``un-pruning" to eliminate the impact of deleted data on model pruning. Then we propose an un-pruning algorithm to approximate the pruned topology driven by retained data. We remark that any existing unlearning algorithm can be integrated with the proposed un-pruning workflow and the error of un-pruning is upper-bounded in theory. Also, our un-pruning algorithm can be applied to both structured sparse models and unstructured sparse models. In the experiment, we further find that Membership Inference Attack (MIA) accuracy is unreliable for assessing whether a model has forgotten deleted data, as a small change in the amount of deleted data can produce arbitrary MIA results. Accordingly, we devise new performance metrics for sparse models to evaluate the success of un-pruning. Lastly, we conduct extensive experiments to verify the efficacy of un-pruning with various pruning methods and unlearning algorithms. Our code is released at https://anonymous.4open.science/r/UnlearningSparseModels-FBC5/.
Related papers
- Maximally-Informative Retrieval for State Space Model Generation [59.954191072042526]
We introduce Retrieval In-Context Optimization (RICO) to minimize model uncertainty for a particular query at test-time.<n>Unlike traditional retrieval-augmented generation (RAG), which relies on externals for document retrieval, our approach leverages direct feedback from the model.<n>We show that standard top-$k$ retrieval with model gradients can approximate our optimization procedure, and provide connections to the leave-one-out loss.
arXiv Detail & Related papers (2025-06-13T18:08:54Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - An Information Theoretic Approach to Machine Unlearning [43.423418819707784]
To comply with AI and data regulations, the need to forget private or copyrighted information from trained machine learning models is increasingly important.<n>In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.<n>We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - On the Necessity of Auditable Algorithmic Definitions for Machine
Unlearning [13.149070833843133]
Machine unlearning, i.e. having a model forget about some of its training data, has become increasingly important as privacy legislation promotes variants of the right-to-be-forgotten.
We first show that the definition that underlies approximate unlearning, which seeks to prove the approximately unlearned model is close to an exactly retrained model, is incorrect because one can obtain the same model using different datasets.
We then turn to exact unlearning approaches and ask how to verify their claims of unlearning.
arXiv Detail & Related papers (2021-10-22T16:16:56Z) - Unrolling SGD: Understanding Factors Influencing Machine Unlearning [17.6607904333012]
Machine unlearning is the process through which a deployed machine learning model forgets about one of its training data points.
We first taxonomize approaches and metrics of approximate unlearning.
We identify verification error, i.e., the L2 difference between the weights of an approximately unlearned and a naively retrained model.
arXiv Detail & Related papers (2021-09-27T23:46:59Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Certifiable Machine Unlearning for Linear Models [1.484852576248587]
Machine unlearning is the task of updating machine learning (ML) models after a subset of the training data they were trained on is deleted.
We present an experimental study of the three state-of-the-art approximate unlearning methods for linear models.
arXiv Detail & Related papers (2021-06-29T05:05:58Z) - Variational Bayesian Unlearning [54.26984662139516]
We study the problem of approximately unlearning a Bayesian model from a small subset of the training data to be erased.
We show that it is equivalent to minimizing an evidence upper bound which trades off between fully unlearning from erased data vs. not entirely forgetting the posterior belief.
In model training with VI, only an approximate (instead of exact) posterior belief given the full data can be obtained, which makes unlearning even more challenging.
arXiv Detail & Related papers (2020-10-24T11:53:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.