Even Faster Simulations with Flow Matching: A Study of Zero Degree Calorimeter Responses
- URL: http://arxiv.org/abs/2507.18811v1
- Date: Thu, 24 Jul 2025 21:21:33 GMT
- Title: Even Faster Simulations with Flow Matching: A Study of Zero Degree Calorimeter Responses
- Authors: Maksymilian Wojnar,
- Abstract summary: Flow matching (FM) is used to develop surrogate models for fast simulations of zero degree calorimeters in the ALICE experiment.<n>We present an effective training strategy that enables the training of fast generative models with an exceptionally low number of parameters.<n>Our FM model achieves a Wasserstein distance of 1.27 for the ZN simulation with an inference time of 0.46 ms per sample, compared to the current best of 1.20 with an inference time of approximately 109 ms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in generative neural networks, particularly flow matching (FM), have enabled the generation of high-fidelity samples while significantly reducing computational costs. A promising application of these models is accelerating simulations in high-energy physics (HEP), helping research institutions meet their increasing computational demands. In this work, we leverage FM to develop surrogate models for fast simulations of zero degree calorimeters in the ALICE experiment. We present an effective training strategy that enables the training of fast generative models with an exceptionally low number of parameters. This approach achieves state-of-the-art simulation fidelity for both neutron (ZN) and proton (ZP) detectors, while offering substantial reductions in computational costs compared to existing methods. Our FM model achieves a Wasserstein distance of 1.27 for the ZN simulation with an inference time of 0.46 ms per sample, compared to the current best of 1.20 with an inference time of approximately 109 ms. The latent FM model further improves the inference speed, reducing the sampling time to 0.026 ms per sample, with a minimal trade-off in accuracy. Similarly, our approach achieves a Wasserstein distance of 1.30 for the ZP simulation, outperforming the current best of 2.08. The source code is available at https://github.com/m-wojnar/faster_zdc.
Related papers
- A Surrogate Model for the Forward Design of Multi-layered Metasurface-based Radar Absorbing Structures [3.328784252410173]
We propose a surrogate model that significantly accelerates the prediction of electromagnetic (EM) responses of multi-layered metasurface-based RAS.<n>The proposed model achieved a cosine similarity of 99.9% and a mean square error of 0.001 within 1000 epochs of training.
arXiv Detail & Related papers (2025-05-14T09:54:00Z) - Parallel simulation for sampling under isoperimetry and score-based diffusion models [56.39904484784127]
As data size grows, reducing the iteration cost becomes an important goal.<n>Inspired by the success of the parallel simulation of the initial value problem in scientific computation, we propose parallel Picard methods for sampling tasks.<n>Our work highlights the potential advantages of simulation methods in scientific computation for dynamics-based sampling and diffusion models.
arXiv Detail & Related papers (2024-12-10T11:50:46Z) - FlowTS: Time Series Generation via Rectified Flow [67.41208519939626]
FlowTS is an ODE-based model that leverages rectified flow with straight-line transport in probability space.<n>For unconditional setting, FlowTS achieves state-of-the-art performance, with context FID scores of 0.019 and 0.011 on Stock and ETTh datasets.<n>For conditional setting, we have achieved superior performance in solar forecasting.
arXiv Detail & Related papers (2024-11-12T03:03:23Z) - Modeling flux tunability in Josephson Traveling Wave Parametric Amplifiers with an open-source frequency-domain simulator [0.0]
Josephson Traveling Wave Parametric Amplifiers (JTWPAs) are integral parts of many experiments carried out in quantum technologies.
These devices exhibit complex nonlinear behavior that cannot be fully explained with simple analytical models.
Open-source numerical tools that allow to model JTWPA flux biasing, such as WRSPICE or PSCAN2, are based on time-domain approaches.
arXiv Detail & Related papers (2024-08-30T13:48:16Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Scientific Machine Learning Based Reduced-Order Models for Plasma Turbulence Simulations [0.0]
This paper investigates non-intrusive Scientific Machine Learning (SciML) Reduced-Order Models (ROMs) for plasma turbulence simulations.
We focus on Operator Inference (OpInf) to build low-cost physics-based ROMs from data for such simulations.
arXiv Detail & Related papers (2024-01-11T15:20:06Z) - Machine Learning methods for simulating particle response in the Zero
Degree Calorimeter at the ALICE experiment, CERN [8.980453507536017]
Currently, over half of the computing power at CERN GRID is used to run High Energy Physics simulations.
The recent updates at the Large Hadron Collider (LHC) create the need for developing more efficient simulation methods.
We propose an alternative approach to the problem that leverages machine learning.
arXiv Detail & Related papers (2023-06-23T16:45:46Z) - Parallel Sampling of Diffusion Models [76.3124029406809]
Diffusion models are powerful generative models but suffer from slow sampling.
We present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel.
arXiv Detail & Related papers (2023-05-25T17:59:42Z) - Generative Adversarial Networks for the fast simulation of the Time
Projection Chamber responses at the MPD detector [0.0]
We demonstrate the applicability of Generative Adversarial Networks (GAN) as the basis for such fast-simulation models.
Our prototype GAN-based model of TPC works more than an order of magnitude faster compared to the detailed simulation.
arXiv Detail & Related papers (2022-03-30T14:31:50Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.