Scientific Machine Learning Based Reduced-Order Models for Plasma Turbulence Simulations
- URL: http://arxiv.org/abs/2401.05972v3
- Date: Tue, 19 Nov 2024 17:16:03 GMT
- Title: Scientific Machine Learning Based Reduced-Order Models for Plasma Turbulence Simulations
- Authors: Constantin Gahr, Ionut-Gabriel Farcas, Frank Jenko,
- Abstract summary: This paper investigates non-intrusive Scientific Machine Learning (SciML) Reduced-Order Models (ROMs) for plasma turbulence simulations.
We focus on Operator Inference (OpInf) to build low-cost physics-based ROMs from data for such simulations.
- Score: 0.0
- License:
- Abstract: This paper investigates non-intrusive Scientific Machine Learning (SciML) Reduced-Order Models (ROMs) for plasma turbulence simulations. In particular, we focus on Operator Inference (OpInf) to build low-cost physics-based ROMs from data for such simulations. As a representative example, we consider the (classical) Hasegawa-Wakatani (HW) equations used for modeling two-dimensional electrostatic drift-wave turbulence. For a comprehensive perspective of the potential of OpInf to construct predictive ROMs, we consider three setups for the HW equations by varying a key parameter, namely the adiabaticity coefficient. These setups lead to the formation of complex and nonlinear dynamics, which makes the construction of predictive ROMs of any kind challenging. We generate the training datasets by performing direct numerical simulations of the HW equations and recording the computed state data and outputs the over a time horizon of $100$ time units in the turbulent phase. We then use these datasets to construct OpInf ROMs for predictions over $400$ additional time units, that is, $400\%$ more than the training horizon. Our results show that the OpInf ROMs capture important statistical features of the turbulent dynamics and generalize beyond the training time horizon while reducing the computational effort of the high-fidelity simulation by up to five orders of magnitude. In the broader context of fusion research, this shows that non-intrusive SciML ROMs have the potential to drastically accelerate numerical studies, which can ultimately enable tasks such as the design of optimized fusion devices.
Related papers
- Fourier neural operators for spatiotemporal dynamics in two-dimensional turbulence [3.0954913678141627]
We identify that the Fourier neural operator (FNO) based models combined with a partial differential equation (PDE) solver can accelerate fluid dynamic simulations.
We also discuss the pitfalls of purely data-driven approaches that need to be avoided by the machine learning models to become viable and competitive tools for long time simulations of turbulence.
arXiv Detail & Related papers (2024-09-23T02:02:02Z) - Accelerating Phase Field Simulations Through a Hybrid Adaptive Fourier Neural Operator with U-Net Backbone [0.7329200485567827]
We propose U-Shaped Adaptive Fourier Neural Operators (U-AFNO), a machine learning (ML) model inspired by recent advances in neural operator learning.
We use U-AFNOs to learn the dynamics mapping the field at a current time step into a later time step.
Our model reproduces the key micro-structure statistics and QoIs with a level of accuracy on-par with the high-fidelity numerical solver.
arXiv Detail & Related papers (2024-06-24T20:13:23Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural
Network Emulators of Geophysical Turbulence [0.0]
We investigate how an often overlooked processing step affects the quality of an emulator's predictions.
We implement ML architectures from a class of methods called reservoir computing: (1) a form of spatial Vector Autoregression (N VAR), and (2) an Echo State Network (ESN)
In all cases, subsampling the training data consistently leads to an increased bias at small scales that resembles numerical diffusion.
arXiv Detail & Related papers (2023-04-28T21:34:53Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - SUPA: A Lightweight Diagnostic Simulator for Machine Learning in
Particle Physics [0.0]
SUPA is an algorithm and software package for generating data by simulating simplified particle propagation, scattering and shower development in matter.
The proposed simulator generates thousands of particle showers per second on a desktop machine, a speed up of up to 6 orders of magnitudes over Geant4.
arXiv Detail & Related papers (2022-02-10T13:14:12Z) - Machine learning accelerated computational fluid dynamics [9.077691121640333]
We use end-to-end deep learning to improve approximations inside computational fluid dynamics for modeling two-dimensional turbulent flows.
For both direct numerical simulation of turbulence and large eddy simulation, our results are as accurate as baseline solvers with 8-10x finer resolution in each spatial dimension.
Our approach exemplifies how scientific computing can leverage machine learning and hardware accelerators to improve simulations without sacrificing accuracy or generalization.
arXiv Detail & Related papers (2021-01-28T19:10:00Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.