論文の概要: Deep Neural Network Driven Simulation Based Inference Method for Pole Position Estimation under Model Misspecification
- arxiv url: http://arxiv.org/abs/2507.18824v1
- Date: Thu, 24 Jul 2025 21:49:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.767776
- Title: Deep Neural Network Driven Simulation Based Inference Method for Pole Position Estimation under Model Misspecification
- Title(参考訳): 深部ニューラルネットワーク駆動シミュレーションによるモデルミス種別に基づく極位置推定法
- Authors: Daniel Sadasivan, Isaac Cordero, Andrew Graham, Cecilia Marsh, Daniel Kupcho, Melana Mourad, Maxim Mai,
- Abstract要約: シミュレーションベース推論(SBI)は,従来のカイ二乗最小化よりも高精度な共振パラメータ推定値が得られることを示す。
これは、pi-pi散乱とrho(770)共鳴のケーススタディによって実証される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation Based Inference (SBI) is shown to yield more accurate resonance parameter estimates than traditional chi-squared minimization in certain cases of model misspecification, demonstrated through a case study of pi-pi scattering and the rho(770) resonance. Models fit to some data sets using chi-squared minimization can predict inaccurate pole positions for the rho(770), while SBI provides more robust predictions across the same models and data. This result is significant both as a proof of concept that SBI can handle model misspecification, and because accurate modeling of pi-pi scattering is essential in the study of many contemporary physical systems (e.g., a1(1260), omega(782)).
- Abstract(参考訳): シミュレーションベース推論 (SBI) は, π-pi散乱とrho(770)共鳴のケーススタディにより, 従来のカイ二乗最小化よりも高精度な共振パラメータ推定値が得られることを示した。
チ二乗最小化を用いたいくつかのデータセットに適合するモデルは、rho(770)に対する不正確なポール位置を予測できるが、SBIは同じモデルとデータに対してより堅牢な予測を提供する。
この結果は、SBIがモデル不特定性を扱うことができるという概念の証明と、現代の多くの物理系(例えば a1(1260), omega(782))の研究において、pi-pi散乱の正確なモデリングが不可欠であることの両方において重要である。
関連論文リスト
- Identifiable Multi-View Causal Discovery Without Non-Gaussianity [63.217175519436125]
多視点構造方程式モデル(SEM)の枠組みにおける線形因果発見への新しいアプローチを提案する。
我々は、SEMの構造が非巡回的であること以外は、余計な仮定をすることなく、モデルの全てのパラメータの識別可能性を証明する。
提案手法は,脳領域間の因果グラフの推定を可能にする実データへのシミュレーションおよび応用を通じて検証される。
論文 参考訳(メタデータ) (2025-02-27T14:06:14Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
本研究は認知拡散確率モデル(CogDPM)を紹介する。
CogDPMは拡散モデルの階層的サンプリング能力に基づく精度推定法と拡散モデル固有の性質から推定される精度重み付きガイダンスを備える。
我々は,Universal Kindomの降水量と表面風速データセットを用いた実世界の予測タスクにCogDPMを適用した。
論文 参考訳(メタデータ) (2024-05-03T15:54:50Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Robust Neural Posterior Estimation and Statistical Model Criticism [1.5749416770494706]
モデラーはシミュレータを真のデータ生成プロセスの理想主義的な表現として扱わなければならない。
本研究では,シミュレーションモデルにおけるブラックボックスパラメータ推論を可能にするアルゴリズムのクラスであるNPEを再検討する。
一方,NPEを経時的に用いた場合,不特定性の存在は信頼できない推論につながることが判明した。
論文 参考訳(メタデータ) (2022-10-12T20:06:55Z) - Investigating the Impact of Model Misspecification in Neural
Simulation-based Inference [1.933681537640272]
本研究では,様々なモデルの誤識別が存在する場合のニューラルネットワークSBIアルゴリズムの挙動について検討する。
ミスセグメンテーションは、パフォーマンスに非常に有害な影響を及ぼす可能性があることに気付きました。
我々は、ニューラルネットワークSBIアルゴリズムが正確な結論を導出するために頼らなければならない場合、モデルの誤特定に対処するために新しいアプローチが必要であると結論付けた。
論文 参考訳(メタデータ) (2022-09-05T09:08:16Z) - Nonparametric likelihood-free inference with Jensen-Shannon divergence
for simulator-based models with categorical output [1.4298334143083322]
シミュレータに基づく統計モデルに対する自由な推論は、機械学習と統計のコミュニティの両方において、関心の高まりを招いている。
本稿では、Jensen-Shannon- divergenceの計算特性を用いて、モデルパラメータに対する推定、仮説テスト、信頼区間の構築を可能にする理論的結果のセットを導出する。
このような近似はより集中的なアプローチの素早い代替手段であり、シミュレーターベースモデルの多種多様な応用には魅力的である。
論文 参考訳(メタデータ) (2022-05-22T18:00:13Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - A likelihood approach to nonparametric estimation of a singular
distribution using deep generative models [4.329951775163721]
深部生成モデルを用いた特異分布の非パラメトリック推定の可能性について検討する。
我々は、インスタンスノイズでデータを摂動することで、新しい効果的な解が存在することを証明した。
また、より深い生成モデルにより効率的に推定できる分布のクラスを特徴付ける。
論文 参考訳(メタデータ) (2021-05-09T23:13:58Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。