A Comprehensive Review of AI-based Intelligent Tutoring Systems: Applications and Challenges
- URL: http://arxiv.org/abs/2507.18882v1
- Date: Fri, 25 Jul 2025 01:43:07 GMT
- Title: A Comprehensive Review of AI-based Intelligent Tutoring Systems: Applications and Challenges
- Authors: Meriem Zerkouk, Miloud Mihoubi, Belkacem Chikhaoui,
- Abstract summary: We use a systematic literature review method to analyze numerous qualified studies published from 2010 to 2025.<n>The results reveal a complex landscape regarding the effectiveness of ITS, highlighting both advancements and persistent challenges.
- Score: 0.4369550829556578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-based Intelligent Tutoring Systems (ITS) have significant potential to transform teaching and learning. As efforts continue to design, develop, and integrate ITS into educational contexts, mixed results about their effectiveness have emerged. This paper provides a comprehensive review to understand how ITS operate in real educational settings and to identify the associated challenges in their application and evaluation. We use a systematic literature review method to analyze numerous qualified studies published from 2010 to 2025, examining domains such as pedagogical strategies, NLP, adaptive learning, student modeling, and domain-specific applications of ITS. The results reveal a complex landscape regarding the effectiveness of ITS, highlighting both advancements and persistent challenges. The study also identifies a need for greater scientific rigor in experimental design and data analysis. Based on these findings, suggestions for future research and practical implications are proposed.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - The AI Imperative: Scaling High-Quality Peer Review in Machine Learning [49.87236114682497]
We argue that AI-assisted peer review must become an urgent research and infrastructure priority.<n>We propose specific roles for AI in enhancing factual verification, guiding reviewer performance, assisting authors in quality improvement, and supporting ACs in decision-making.
arXiv Detail & Related papers (2025-06-09T18:37:14Z) - Advancing Education through Tutoring Systems: A Systematic Literature Review [3.276010440333338]
This study systematically reviews the transformative role of Tutoring Systems, encompassing Intelligent Tutoring Systems (ITS) and Robot Tutoring Systems (RTS)<n>The findings reveal significant advancements in AI techniques that enhance adaptability, engagement, and learning outcomes.<n>The study highlights the complementary strengths of ITS and RTS, proposing integrated hybrid solutions to maximize educational benefits.
arXiv Detail & Related papers (2025-03-12T18:47:07Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.<n>Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - Analyzing the Impact of AI Tools on Student Study Habits and Academic Performance [0.0]
The research focuses on how AI tools can support personalized learning, adaptive test adjustments, and provide real-time classroom analysis.<n>Student feedback revealed strong support for these features, and the study found a significant reduction in study hours alongside an increase in GPA.<n>Despite these benefits, challenges such as over-reliance on AI and difficulties in integrating AI with traditional teaching methods were also identified.
arXiv Detail & Related papers (2024-12-03T04:51:57Z) - The Evolution of Learning: Assessing the Transformative Impact of Generative AI on Higher Education [0.0]
Generative Artificial Intelligence models such as ChatGPT have experienced a surge in popularity.
This research paper investigates the impact of GAI on university students and Higher Education Institutions.
arXiv Detail & Related papers (2024-04-16T13:19:57Z) - Integrating AI and Learning Analytics for Data-Driven Pedagogical Decisions and Personalized Interventions in Education [0.2812395851874055]
This research study explores the conceptualization, development, and deployment of an innovative learning analytics tool.
By analyzing critical data points such as students' stress levels, curiosity, confusion, agitation, topic preferences, and study methods, the tool provides a comprehensive view of the learning environment.
This research underscores AI's role in shaping personalized, data-driven education.
arXiv Detail & Related papers (2023-12-15T06:00:26Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
We propose a new task, named Goal-oriented Intelligent Tutoring Systems (GITS)
GITS aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment.
We propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI)
arXiv Detail & Related papers (2023-12-03T12:37:16Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
In this work, we create a benchmark that is a collection of nine tasks in the domains of natural language processing and computer vision.
We model external knowledge as constraints, specify the sources of the constraints for each task, and implement various models that use these constraints.
arXiv Detail & Related papers (2023-02-16T16:45:36Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.