Dealing with Segmentation Errors in Needle Reconstruction for MRI-Guided Brachytherapy
- URL: http://arxiv.org/abs/2507.18895v1
- Date: Fri, 25 Jul 2025 02:35:04 GMT
- Title: Dealing with Segmentation Errors in Needle Reconstruction for MRI-Guided Brachytherapy
- Authors: Vangelis Kostoulas, Arthur Guijt, Ellen M. Kerkhof, Bradley R. Pieters, Peter A. N. Bosman, Tanja Alderliesten,
- Abstract summary: We propose adaptations to existing post-processing techniques aimed at dealing with segmentation errors and improving the reconstruction accuracy.<n> Experiments on a prostate cancer dataset, based on MRI scans annotated by medical professionals, demonstrate that our proposed adaptations can help to effectively manage segmentation errors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Brachytherapy involves bringing a radioactive source near tumor tissue using implanted needles. Image-guided brachytherapy planning requires amongst others, the reconstruction of the needles. Manually annotating these needles on patient images can be a challenging and time-consuming task for medical professionals. For automatic needle reconstruction, a two-stage pipeline is commonly adopted, comprising a segmentation stage followed by a post-processing stage. While deep learning models are effective for segmentation, their results often contain errors. No currently existing post-processing technique is robust to all possible segmentation errors. We therefore propose adaptations to existing post-processing techniques mainly aimed at dealing with segmentation errors and thereby improving the reconstruction accuracy. Experiments on a prostate cancer dataset, based on MRI scans annotated by medical professionals, demonstrate that our proposed adaptations can help to effectively manage segmentation errors, with the best adapted post-processing technique achieving median needle-tip and needle-bottom point localization errors of $1.07$ (IQR $\pm 1.04$) mm and $0.43$ (IQR $\pm 0.46$) mm, respectively, and median shaft error of $0.75$ (IQR $\pm 0.69$) mm with 0 false positive and 0 false negative needles on a test set of 261 needles.
Related papers
- Automatic registration with continuous pose updates for marker-less
surgical navigation in spine surgery [52.63271687382495]
We present an approach that automatically solves the registration problem for lumbar spinal fusion surgery in a radiation-free manner.
A deep neural network was trained to segment the lumbar spine and simultaneously predict its orientation, yielding an initial pose for preoperative models.
An intuitive surgical guidance is provided thanks to the integration into an augmented reality based navigation system.
arXiv Detail & Related papers (2023-08-05T16:26:41Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
We present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map.
We employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Implicit Model (DDIM) at each step of the sampling process.
arXiv Detail & Related papers (2023-08-03T21:56:50Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
We present a novel approach for unpaired image-to-image translation of prostate MRIs and an uncertainty-aware training approach for classifying clinically significant PCa.
Our approach involves a novel pipeline for translating unpaired 3.0T multi-parametric prostate MRIs to 1.5T, thereby augmenting the available training data.
Our experiments demonstrate that the proposed method significantly improves the Area Under ROC Curve (AUC) by over 20% compared to the previous work.
arXiv Detail & Related papers (2023-07-02T05:26:54Z) - Meta-Analysis of Transfer Learning for Segmentation of Brain Lesions [0.0]
Manual segmentation of stroke lesions from 3D magnetic resonance (MR) imaging volumes, the current gold standard, is not only very time-consuming, but its accuracy highly depends on the operator's experience.
We have implemented and tested a fully automatic method for stroke lesion segmentation using eight different 2D-model architectures trained via transfer learning (TL) and mixed data approaches.
Cross-validation results indicate that our new method can efficiently and automatically segment lesions fast and with high accuracy compared to ground truth.
arXiv Detail & Related papers (2023-06-20T17:42:30Z) - Segmentation of Planning Target Volume in CT Series for Total Marrow
Irradiation Using U-Net [0.0]
We present a deep learning-based auto-contouring method for segmenting Planning Target Volume (PTV) for TMLI treatment using the U-Net architecture.
Our findings are a preliminary but significant step towards developing a segmentation model that has the potential to save radiation oncologists a considerable amount of time.
arXiv Detail & Related papers (2023-04-05T10:40:37Z) - MAPPING: Model Average with Post-processing for Stroke Lesion
Segmentation [57.336056469276585]
We present our stroke lesion segmentation model based on nnU-Net framework, and apply it to the Anatomical Tracings of Lesions After Stroke dataset.
Our method took the first place in the 2022 MICCAI ATLAS Challenge with an average Dice score of 0.6667, Lesion-wise F1 score of 0.5643, Simple Lesion Count score of 4.5367, and Volume Difference score of 8804.9102.
arXiv Detail & Related papers (2022-11-11T14:17:04Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - Automated cross-sectional view selection in CT angiography of aortic
dissections with uncertainty awareness and retrospective clinical annotations [11.415942647070796]
We show how manual annotations routinely collected in a clinic can be efficiently used to ease this task.
Ill-posed but repetitive imaging tasks can be eased or automated by leveraging imperfect, retrospective clinical annotations.
arXiv Detail & Related papers (2021-11-22T15:11:36Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - Joint Registration and Segmentation via Multi-Task Learning for Adaptive
Radiotherapy of Prostate Cancer [3.0929226049096217]
We formulate registration and segmentation as a joint problem via a Multi-Task Learning setting.
We study this approach in the context of adaptive image-guided radiotherapy for prostate cancer.
arXiv Detail & Related papers (2021-05-05T02:45:49Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
In tomographic imaging, anatomical structures are reconstructed by applying a pseudo-inverse forward model to acquired signals.
Patient motion corrupts the geometry alignment in the reconstruction process resulting in motion artifacts.
We propose an appearance learning approach recognizing the structures of rigid motion independently from the scanned object.
arXiv Detail & Related papers (2020-06-18T09:49:11Z) - 4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation [49.32653090178743]
We investigate whether extending this problem to full 4D deep learning using a history of MRI volumes can improve performance.
We find that our proposed architecture outperforms previous approaches with a lesion-wise true positive rate of 0.84 at a lesion-wise false positive rate of 0.19.
arXiv Detail & Related papers (2020-04-20T11:41:01Z) - A Cross-Stitch Architecture for Joint Registration and Segmentation in
Adaptive Radiotherapy [1.433758865948252]
We propose a registration network that integrates segmentation propagation between images, and a segmentation network to predict the segmentation directly.
These networks are connected into a single joint architecture via so-called cross-stitch units.
The proposed method is evaluated in the context of adaptive image-guided radiotherapy, using daily prostate CT imaging.
arXiv Detail & Related papers (2020-04-17T08:55:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.