論文の概要: Towards Improving Long-Tail Entity Predictions in Temporal Knowledge Graphs through Global Similarity and Weighted Sampling
- arxiv url: http://arxiv.org/abs/2507.18977v1
- Date: Fri, 25 Jul 2025 06:02:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.837213
- Title: Towards Improving Long-Tail Entity Predictions in Temporal Knowledge Graphs through Global Similarity and Weighted Sampling
- Title(参考訳): グローバルな類似性と重み付きサンプリングによる時間的知識グラフにおける長距離エンティティ予測の改善に向けて
- Authors: Mehrnoosh Mirtaheri, Ryan A. Rossi, Sungchul Kim, Kanak Mahadik, Tong Yu, Xiang Chen, Mohammad Rostami,
- Abstract要約: 時間知識グラフ(TKG)補完モデルは、伝統的にトレーニング中にグラフ全体へのアクセスを前提としている。
本稿では,TKGに特化して設計されたインクリメンタルトレーニングフレームワークを提案する。
提案手法は,モデルに依存しない拡張層と加重サンプリング戦略を組み合わせることで,既存のTKG補完手法を拡張および改善することができる。
- 参考スコア(独自算出の注目度): 53.11315884128402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal Knowledge Graph (TKG) completion models traditionally assume access to the entire graph during training. This overlooks challenges stemming from the evolving nature of TKGs, such as: (i) the model's requirement to generalize and assimilate new knowledge, and (ii) the task of managing new or unseen entities that often have sparse connections. In this paper, we present an incremental training framework specifically designed for TKGs, aiming to address entities that are either not observed during training or have sparse connections. Our approach combines a model-agnostic enhancement layer with a weighted sampling strategy, that can be augmented to and improve any existing TKG completion method. The enhancement layer leverages a broader, global definition of entity similarity, which moves beyond mere local neighborhood proximity of GNN-based methods. The weighted sampling strategy employed in training accentuates edges linked to infrequently occurring entities. We evaluate our method on two benchmark datasets, and demonstrate that our framework outperforms existing methods in total link prediction, inductive link prediction, and in addressing long-tail entities. Notably, our method achieves a 10\% improvement and a 15\% boost in MRR for these datasets. The results underscore the potential of our approach in mitigating catastrophic forgetting and enhancing the robustness of TKG completion methods, especially in an incremental training context
- Abstract(参考訳): 時間知識グラフ(TKG)補完モデルは、伝統的にトレーニング中にグラフ全体へのアクセスを前提としている。
これは、TKGsの進化する性質から生じる課題を見落としている。
一 新知識の一般化及び同化に関するモデルの要件、及び
二 しばしば疎結合の少ない新・未確認のエンティティを管理すること。
本稿では,TKGに特化して設計されたインクリメンタルトレーニングフレームワークを提案する。
提案手法は,モデルに依存しない拡張層と加重サンプリング戦略を組み合わせることで,既存のTKG補完手法を拡張および改善することができる。
エンハンスメント層は、GNNベースの手法の単なる局所的近傍を超越した、より広範にグローバルなエンティティ類似性の定義を利用する。
トレーニングに使用される重み付きサンプリング戦略は、頻繁に発生するエンティティと結びついたエッジをアクセント化する。
提案手法を2つのベンチマークデータセット上で評価し,提案手法がリンク全体の予測,帰納的リンク予測,ロングテールエンティティへの対処において,既存の手法よりも優れていることを示す。
特に,本手法は,これらのデータセットに対するMRRの10倍改善と15倍向上を実現している。
以上の結果から,TKG完成法,特に漸進的学習文脈における破滅的忘れ込みの軽減と堅牢性向上に対する我々のアプローチの可能性が浮き彫りとなった。
関連論文リスト
- Proxy-Free GFlowNet [39.964801793885485]
Generative Flow Networks (GFlowNets) は、構成オブジェクト上の分布をモデル化することによって、多種多様な高逆構造をサンプリングするように設計されている。
既存のほとんどのメソッドはモデルベースのアプローチを採用し、データセットからプロキシモデルを学び、報酬関数を近似する。
textbfTrajectory-Distilled GFlowNet (TD-GFN) を提案する。
論文 参考訳(メタデータ) (2025-05-26T15:12:22Z) - Deep Sparse Latent Feature Models for Knowledge Graph Completion [24.342670268545085]
本稿では,深部変分オートエンコーダ(VAE)により最適化されたスパース潜時特徴モデルを用いた新しい確率的KGCフレームワークを提案する。
提案手法は, 局所的なテキスト特徴を持つ動的クラスタリング情報を用いて, 欠落した三重項を効果的に完遂すると同時に, 基礎となる潜在構造を解釈しやすくする。
論文 参考訳(メタデータ) (2024-11-24T03:17:37Z) - Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion [15.293684479404092]
CGCNと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,事前学習プロセスにコントラスト信号と深部構造情報を導入している。
本手法は,複数の実世界のグラフデータセットに対して実験的に検証されている。
論文 参考訳(メタデータ) (2024-08-08T09:49:26Z) - Label Deconvolution for Node Representation Learning on Large-scale Attributed Graphs against Learning Bias [72.33336385797944]
本稿では,学習バイアスを軽減するため,ラベルの効率的な正規化手法であるラベルデコンボリューション(LD)を提案する。
LDはOpen Graph Benchmarkデータセット上で最先端の手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - History Repeats: Overcoming Catastrophic Forgetting For Event-Centric
Temporal Knowledge Graph Completion [33.38304336898247]
時間知識グラフ(TKG)の完成モデルは、トレーニング中にグラフ全体にアクセスすることに依存する。
TKGデータは、イベントが展開するにつれて徐々に受信され、時間とともに動的に非定常なデータ分布につながる。
本稿では,任意のTKG完了法に適用可能な一般的な連続トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-30T01:21:36Z) - Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs using
Confidence-Augmented Reinforcement Learning [24.338098716004485]
TKGCは、時間的knwoledge graph(TKG)におけるエンティティ間の欠落リンクを予測することを目的としている。
近年,TKG数発アウトオブグラフ(OOG)リンク予測という新たなタスクが提案されている。
本稿では,この課題を解決するために,少数ショット学習と強化学習を組み合わせたTKGC法FITCARLを提案する。
論文 参考訳(メタデータ) (2023-04-02T20:05:20Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive Deep Graph Clustering (CDGC)は、異なるクラスタにノードをグループ化するために、コントラスト学習のパワーを活用する。
我々は、GraphLearnerと呼ばれる、完全学習可能な拡張を備えたグラフノードクラスタリングを提案する。
学習可能な拡張器を導入し、CDGCのための高品質でタスク固有の拡張サンプルを生成する。
論文 参考訳(メタデータ) (2022-12-07T10:19:39Z) - Causal Incremental Graph Convolution for Recommender System Retraining [89.25922726558875]
実世界のレコメンデーションシステムは、新しいデータを維持するために定期的に再トレーニングする必要がある。
本研究では,GCNに基づくレコメンデータモデルを用いて,グラフ畳み込みネットワーク(GCN)を効率的に再学習する方法を検討する。
論文 参考訳(メタデータ) (2021-08-16T04:20:09Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
グラフニューラルネットワーク(GNN)における適応接続サンプリングのための統一的なフレームワークを提案する。
提案フレームワークは,深部GNNの過度なスムース化や過度に適合する傾向を緩和するだけでなく,グラフ解析タスクにおけるGNNによる不確実性の学習を可能にする。
論文 参考訳(メタデータ) (2020-06-07T07:06:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。