Towards Improving Long-Tail Entity Predictions in Temporal Knowledge Graphs through Global Similarity and Weighted Sampling
- URL: http://arxiv.org/abs/2507.18977v1
- Date: Fri, 25 Jul 2025 06:02:48 GMT
- Title: Towards Improving Long-Tail Entity Predictions in Temporal Knowledge Graphs through Global Similarity and Weighted Sampling
- Authors: Mehrnoosh Mirtaheri, Ryan A. Rossi, Sungchul Kim, Kanak Mahadik, Tong Yu, Xiang Chen, Mohammad Rostami,
- Abstract summary: Temporal Knowledge Graph (TKG) completion models traditionally assume access to the entire graph during training.<n>We present an incremental training framework specifically designed for TKGs, aiming to address entities that are either not observed during training or have sparse connections.<n>Our approach combines a model-agnostic enhancement layer with a weighted sampling strategy, that can be augmented to and improve any existing TKG completion method.
- Score: 53.11315884128402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal Knowledge Graph (TKG) completion models traditionally assume access to the entire graph during training. This overlooks challenges stemming from the evolving nature of TKGs, such as: (i) the model's requirement to generalize and assimilate new knowledge, and (ii) the task of managing new or unseen entities that often have sparse connections. In this paper, we present an incremental training framework specifically designed for TKGs, aiming to address entities that are either not observed during training or have sparse connections. Our approach combines a model-agnostic enhancement layer with a weighted sampling strategy, that can be augmented to and improve any existing TKG completion method. The enhancement layer leverages a broader, global definition of entity similarity, which moves beyond mere local neighborhood proximity of GNN-based methods. The weighted sampling strategy employed in training accentuates edges linked to infrequently occurring entities. We evaluate our method on two benchmark datasets, and demonstrate that our framework outperforms existing methods in total link prediction, inductive link prediction, and in addressing long-tail entities. Notably, our method achieves a 10\% improvement and a 15\% boost in MRR for these datasets. The results underscore the potential of our approach in mitigating catastrophic forgetting and enhancing the robustness of TKG completion methods, especially in an incremental training context
Related papers
- Proxy-Free GFlowNet [39.964801793885485]
Generative Flow Networks (GFlowNets) are designed to sample diverse, high-reward structures by modeling distributions over compositional objects.<n>Most existing methods adopt a model-based approach, learning a proxy model from the dataset to approximate the reward function.<n>We propose textbfTrajectory-Distilled GFlowNet (TD-GFN), a emphproxy-free training framework that eliminates the need for out-of-dataset reward queries.
arXiv Detail & Related papers (2025-05-26T15:12:22Z) - Deep Sparse Latent Feature Models for Knowledge Graph Completion [24.342670268545085]
This paper presents a novel probabilistic KGC framework utilizing sparse latent feature models, optimized via a deep variational autoencoder (VAE)<n>Our proposed method dynamically global clustering information with local textual features to effectively complete missing triples, while also providing enhanced interpretability of the underlying latent structures.
arXiv Detail & Related papers (2024-11-24T03:17:37Z) - Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion [15.293684479404092]
We propose a novel deep graph clustering method called CGCN.
Our approach introduces contrastive signals and deep structural information into the pre-training process.
Our method has been experimentally validated on multiple real-world graph datasets.
arXiv Detail & Related papers (2024-08-08T09:49:26Z) - Label Deconvolution for Node Representation Learning on Large-scale Attributed Graphs against Learning Bias [72.33336385797944]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias.<n>We show that LD significantly outperforms state-of-the-art methods on Open Graph Benchmark datasets.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - History Repeats: Overcoming Catastrophic Forgetting For Event-Centric
Temporal Knowledge Graph Completion [33.38304336898247]
Temporal knowledge graph (TKG) completion models rely on having access to the entire graph during training.
TKG data is often received incrementally as events unfold, leading to a dynamic non-stationary data distribution over time.
We propose a general continual training framework that is applicable to any TKG completion method.
arXiv Detail & Related papers (2023-05-30T01:21:36Z) - Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs using
Confidence-Augmented Reinforcement Learning [24.338098716004485]
TKGC aims to predict the missing links among the entities in a temporal knwoledge graph (TKG)
Recently, a new task, i.e., TKG few-shot out-of-graph (OOG) link prediction, is proposed.
We propose a TKGC method FITCARL that combines few-shot learning with reinforcement learning to solve this task.
arXiv Detail & Related papers (2023-04-02T20:05:20Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive deep graph clustering (CDGC) leverages the power of contrastive learning to group nodes into different clusters.
We propose a Graph Node Clustering with Fully Learnable Augmentation, termed GraphLearner.
It introduces learnable augmentors to generate high-quality and task-specific augmented samples for CDGC.
arXiv Detail & Related papers (2022-12-07T10:19:39Z) - Causal Incremental Graph Convolution for Recommender System Retraining [89.25922726558875]
Real-world recommender system needs to be regularly retrained to keep with the new data.
In this work, we consider how to efficiently retrain graph convolution network (GCN) based recommender models.
arXiv Detail & Related papers (2021-08-16T04:20:09Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
We propose a unified framework for adaptive connection sampling in graph neural networks (GNNs)
The proposed framework not only alleviates over-smoothing and over-fitting tendencies of deep GNNs, but also enables learning with uncertainty in graph analytic tasks with GNNs.
arXiv Detail & Related papers (2020-06-07T07:06:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.