MindSpeed RL: Distributed Dataflow for Scalable and Efficient RL Training on Ascend NPU Cluster
- URL: http://arxiv.org/abs/2507.19017v1
- Date: Fri, 25 Jul 2025 07:11:49 GMT
- Title: MindSpeed RL: Distributed Dataflow for Scalable and Efficient RL Training on Ascend NPU Cluster
- Authors: Laingjun Feng, Chenyi Pan, Xinjie Guo, Fei Mei, Benzhe Ning, Jianxiang Zhang, Xinyang Liu, Beirong Zhou, Zeng Shu, Chang Liu, Guang Yang, Zhenyu Han, Jiangben Wang, Bo Wang,
- Abstract summary: Reinforcement learning (RL) is a paradigm increasingly used to align large language models.<n>In this article, we introduce MindSpeed RL, an effective and efficient system for large-scale RL training.
- Score: 6.589537564035392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) is a paradigm increasingly used to align large language models. Popular RL algorithms utilize multiple workers and can be modeled as a graph, where each node is the status of a worker and each edge represents dataflow between nodes. Owing to the heavy cross-node dependencies, the RL training system usually suffers from poor cluster scalability and low memory utilization. In this article, we introduce MindSpeed RL, an effective and efficient system for large-scale RL training. Unlike existing centralized methods, MindSpeed RL organizes the essential data dependencies in RL training, i.e., sample flow and resharding flow, from a distributed view. On the one hand, a distributed transfer dock strategy, which sets controllers and warehouses on the basis of the conventional replay buffer, is designed to release the dispatch overhead in the sample flow. A practical allgather--swap strategy is presented to eliminate redundant memory usage in resharding flow. In addition, MindSpeed RL further integrates numerous parallelization strategies and acceleration techniques for systematic optimization. Compared with existing state-of-the-art systems, comprehensive experiments on the RL training of popular Qwen2.5-Dense-7B/32B, Qwen3-MoE-30B, and DeepSeek-R1-MoE-671B show that MindSpeed RL increases the throughput by 1.42 ~ 3.97 times. Finally, we open--source MindSpeed RL and perform all the experiments on a super pod of Ascend with 384 neural processing units (NPUs) to demonstrate the powerful performance and reliability of Ascend.
Related papers
- Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle [53.239242017802056]
Reinforcement learning (RL) has emerged as an effective post-training paradigm for enhancing the reasoning capabilities of multimodal large language model (MLLM)<n>However, current RL pipelines often suffer from training inefficiencies caused by two underexplored issues: Advantage Collapsing and Rollout Silencing.<n>We propose Shuffle-R1, a simple yet principled framework that improves RL fine-tuning efficiency by dynamically restructuring trajectory sampling and batch composition.
arXiv Detail & Related papers (2025-08-07T17:53:47Z) - Echo: Decoupling Inference and Training for Large-Scale RL Alignment on Heterogeneous Swarms [4.127488674019288]
Post-training for large language models co-locates trajectory sampling and policy optimisation on the same GPU cluster.<n>We present Echo, the RL system that cleanly decouples these two phases across heterogeneous "inference" and "training" swarms.
arXiv Detail & Related papers (2025-08-07T13:37:04Z) - LlamaRL: A Distributed Asynchronous Reinforcement Learning Framework for Efficient Large-scale LLM Training [32.575669924032276]
Reinforcement Learning (RL) has become the most effective post-training approach for improving the capabilities of Large Language Models (LLMs)<n>We present LlamaRL, a fully distributed, asynchronous RL framework optimized for efficient training of large-scale LLMs.
arXiv Detail & Related papers (2025-05-29T22:14:15Z) - StreamRL: Scalable, Heterogeneous, and Elastic RL for LLMs with Disaggregated Stream Generation [55.75008325187133]
Reinforcement learning (RL) has become the core post-training technique for large language models (LLMs)<n>StreamRL is designed with disaggregation from first principles to address two types of performance bottlenecks.<n> Experiments show that StreamRL improves throughput by up to 2.66x compared to existing state-of-the-art systems.
arXiv Detail & Related papers (2025-04-22T14:19:06Z) - Trajectory Balance with Asynchrony: Decoupling Exploration and Learning for Fast, Scalable LLM Post-Training [71.16258800411696]
Reinforcement learning (RL) is a critical component of large language model (LLM) post-training.<n>Existing on-policy algorithms used for post-training are inherently incompatible with the use of experience replay buffers.<n>We propose efficiently obtaining this benefit of replay buffers via Trajectory Balance with Asynchrony (TBA)
arXiv Detail & Related papers (2025-03-24T17:51:39Z) - SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores [13.948640763797776]
We present a novel abstraction on the dataflows of RL training, which unifies diverse RL training applications into a general framework.
We develop a scalable, efficient, and distributed RL system called ReaLly scalableRL, which allows efficient and massively parallelized training.
SRL is the first in the academic community to perform RL experiments at a large scale with over 15k CPU cores.
arXiv Detail & Related papers (2023-06-29T05:16:25Z) - MSRL: Distributed Reinforcement Learning with Dataflow Fragments [16.867322708270116]
Reinforcement learning (RL) trains many agents, which is resource-intensive and must scale to large GPU clusters.
We describe MindSpore Reinforcement Learning (MSRL), a distributed RL training system that supports distribution policies that govern how RL training is parallelised and distributed on cluster resources.
MSRL introduces the new abstraction of a fragmented dataflow graph, which maps functions from an RL algorithm's training loop to parallel computational fragments.
arXiv Detail & Related papers (2022-10-03T12:34:58Z) - Single-Shot Pruning for Offline Reinforcement Learning [47.886329599997474]
Deep Reinforcement Learning (RL) is a powerful framework for solving complex real-world problems.
One way to tackle this problem is to prune neural networks leaving only the necessary parameters.
We close the gap between RL and single-shot pruning techniques and present a general pruning approach to the Offline RL.
arXiv Detail & Related papers (2021-12-31T18:10:02Z) - FNAS: Uncertainty-Aware Fast Neural Architecture Search [54.49650267859032]
Reinforcement learning (RL)-based neural architecture search (NAS) generally guarantees better convergence yet suffers from the requirement of huge computational resources.
We propose a general pipeline to accelerate the convergence of the rollout process as well as the RL process in NAS.
Experiments on the Mobile Neural Architecture Search (MNAS) search space show the proposed Fast Neural Architecture Search (FNAS) accelerates standard RL-based NAS process by 10x.
arXiv Detail & Related papers (2021-05-25T06:32:52Z) - Learning to Prune Deep Neural Networks via Reinforcement Learning [64.85939668308966]
PuRL is a deep reinforcement learning based algorithm for pruning neural networks.
It achieves sparsity and accuracy comparable to current state-of-the-art methods.
arXiv Detail & Related papers (2020-07-09T13:06:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.