Cross Spatial Temporal Fusion Attention for Remote Sensing Object Detection via Image Feature Matching
- URL: http://arxiv.org/abs/2507.19118v1
- Date: Fri, 25 Jul 2025 09:52:06 GMT
- Title: Cross Spatial Temporal Fusion Attention for Remote Sensing Object Detection via Image Feature Matching
- Authors: Abu Sadat Mohammad Salehin Amit, Xiaoli Zhang, Md Masum Billa Shagar, Zhaojun Liu, Xiongfei Li, Fanlong Meng,
- Abstract summary: We propose a mechanism that enhances feature representation by integrating scale-invariant keypoints detected independently in both reference and query images.<n>Our approach improves feature matching in two ways: First, by creating correspondence maps that leverage information from multiple image regions simultaneously, and second, by reformulating the similarity matching process as a classification task.<n>To demonstrate the practical utility of improved feature matching, we evaluate CSTF on object detection tasks using the HRSC2016 and DOTA benchmark datasets.
- Score: 15.57849268814515
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effectively describing features for cross-modal remote sensing image matching remains a challenging task due to the significant geometric and radiometric differences between multimodal images. Existing methods primarily extract features at the fully connected layer but often fail to capture cross-modal similarities effectively. We propose a Cross Spatial Temporal Fusion (CSTF) mechanism that enhances feature representation by integrating scale-invariant keypoints detected independently in both reference and query images. Our approach improves feature matching in two ways: First, by creating correspondence maps that leverage information from multiple image regions simultaneously, and second, by reformulating the similarity matching process as a classification task using SoftMax and Fully Convolutional Network (FCN) layers. This dual approach enables CSTF to maintain sensitivity to distinctive local features while incorporating broader contextual information, resulting in robust matching across diverse remote sensing modalities. To demonstrate the practical utility of improved feature matching, we evaluate CSTF on object detection tasks using the HRSC2016 and DOTA benchmark datasets. Our method achieves state-of-theart performance with an average mAP of 90.99% on HRSC2016 and 90.86% on DOTA, outperforming existing models. The CSTF model maintains computational efficiency with an inference speed of 12.5 FPS. These results validate that our approach to crossmodal feature matching directly enhances downstream remote sensing applications such as object detection.
Related papers
- FPDANet: A Multi-Section Classification Model for Intelligent Screening of Fetal Ultrasound [2.255017160735307]
We propose a bilateral multi-scale information fusion network-based FPDANet to address the above challenges.<n>Specifically, we design the positional attention mechanism (DAN) module, which utilizes the similarity of features.<n>In addition, we design a bilateral multi-scale (FPAN) information fusion module to capture contextual and global feature dependencies.
arXiv Detail & Related papers (2025-06-06T13:00:17Z) - GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning [51.677086019209554]
We propose a Generalized Structural Sparse to capture powerful relationships across modalities for pair-wise similarity learning.
The distance metric delicately encapsulates two formats of diagonal and block-diagonal terms.
Experiments on cross-modal and two extra uni-modal retrieval tasks have validated its superiority and flexibility.
arXiv Detail & Related papers (2024-10-20T03:45:50Z) - Embracing Events and Frames with Hierarchical Feature Refinement Network for Object Detection [17.406051477690134]
Event cameras output sparse and asynchronous events, providing a potential solution to solve these problems.
We propose a novel hierarchical feature refinement network for event-frame fusion.
Our method exhibits significantly better robustness when introducing 15 different corruption types to the frame images.
arXiv Detail & Related papers (2024-07-17T14:09:46Z) - Fusion-Mamba for Cross-modality Object Detection [63.56296480951342]
Cross-modality fusing information from different modalities effectively improves object detection performance.
We design a Fusion-Mamba block (FMB) to map cross-modal features into a hidden state space for interaction.
Our proposed approach outperforms the state-of-the-art methods on $m$AP with 5.9% on $M3FD$ and 4.9% on FLIR-Aligned datasets.
arXiv Detail & Related papers (2024-04-14T05:28:46Z) - A Dual Attentive Generative Adversarial Network for Remote Sensing Image
Change Detection [6.906936669510404]
We propose a dual attentive generative adversarial network for achieving very high-resolution remote sensing image change detection tasks.
The DAGAN framework has better performance with 85.01% mean IoU and 91.48% mean F1 score than advanced methods on the LEVIR dataset.
arXiv Detail & Related papers (2023-10-03T08:26:27Z) - Dense Affinity Matching for Few-Shot Segmentation [83.65203917246745]
Few-Shot (FSS) aims to segment the novel class images with a few samples.
We propose a dense affinity matching framework to exploit the support-query interaction.
We show that our framework performs very competitively under different settings with only 0.68M parameters.
arXiv Detail & Related papers (2023-07-17T12:27:15Z) - Object Segmentation by Mining Cross-Modal Semantics [68.88086621181628]
We propose a novel approach by mining the Cross-Modal Semantics to guide the fusion and decoding of multimodal features.
Specifically, we propose a novel network, termed XMSNet, consisting of (1) all-round attentive fusion (AF), (2) coarse-to-fine decoder (CFD), and (3) cross-layer self-supervision.
arXiv Detail & Related papers (2023-05-17T14:30:11Z) - Correlation-Aware Deep Tracking [83.51092789908677]
We propose a novel target-dependent feature network inspired by the self-/cross-attention scheme.
Our network deeply embeds cross-image feature correlation in multiple layers of the feature network.
Our model can be flexibly pre-trained on abundant unpaired images, leading to notably faster convergence than the existing methods.
arXiv Detail & Related papers (2022-03-03T11:53:54Z) - Unsupervised Image Fusion Method based on Feature Mutual Mapping [16.64607158983448]
We propose an unsupervised adaptive image fusion method to address the above issues.
We construct a global map to measure the connections of pixels between the input source images.
Our method achieves superior performance in both visual perception and objective evaluation.
arXiv Detail & Related papers (2022-01-25T07:50:14Z) - Cross-Modality Attentive Feature Fusion for Object Detection in
Multispectral Remote Sensing Imagery [0.6853165736531939]
Cross-modality fusing complementary information of multispectral remote sensing image pairs can improve the perception ability of detection algorithms.
We propose a novel and lightweight multispectral feature fusion approach with joint common-modality and differential-modality attentions.
Our proposed approach can achieve the state-of-the-art performance at a low cost.
arXiv Detail & Related papers (2021-12-06T13:12:36Z) - MuCAN: Multi-Correspondence Aggregation Network for Video
Super-Resolution [63.02785017714131]
Video super-resolution (VSR) aims to utilize multiple low-resolution frames to generate a high-resolution prediction for each frame.
Inter- and intra-frames are the key sources for exploiting temporal and spatial information.
We build an effective multi-correspondence aggregation network (MuCAN) for VSR.
arXiv Detail & Related papers (2020-07-23T05:41:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.