Balancing Conservatism and Aggressiveness: Prototype-Affinity Hybrid Network for Few-Shot Segmentation
- URL: http://arxiv.org/abs/2507.19140v1
- Date: Fri, 25 Jul 2025 10:22:08 GMT
- Title: Balancing Conservatism and Aggressiveness: Prototype-Affinity Hybrid Network for Few-Shot Segmentation
- Authors: Tianyu Zou, Shengwu Xiong, Ruilin Yao, Yi Rong,
- Abstract summary: We study the few-shot segmentation (FSS) task, which aims to segment objects belonging to unseen categories in a query image.<n>Our analysis reveals that the predictions made by prototype learning methods are usually conservative, while those of affinity learning methods tend to be more aggressive.<n>We propose a Prototype-guided Feature Enhancement (PFE) module and an Attention Score (ASC) module in each attention block of an affinity learning model (called affinity learner)<n>These two modules utilize the predictions generated by a pre-trained prototype learning model (called prototype predictor) to enhance the foreground information in support and query image representations.
- Score: 14.177510695317098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the few-shot segmentation (FSS) task, which aims to segment objects belonging to unseen categories in a query image by learning a model on a small number of well-annotated support samples. Our analysis of two mainstream FSS paradigms reveals that the predictions made by prototype learning methods are usually conservative, while those of affinity learning methods tend to be more aggressive. This observation motivates us to balance the conservative and aggressive information captured by these two types of FSS frameworks so as to improve the segmentation performance. To achieve this, we propose a **P**rototype-**A**ffinity **H**ybrid **Net**work (PAHNet), which introduces a Prototype-guided Feature Enhancement (PFE) module and an Attention Score Calibration (ASC) module in each attention block of an affinity learning model (called affinity learner). These two modules utilize the predictions generated by a pre-trained prototype learning model (called prototype predictor) to enhance the foreground information in support and query image representations and suppress the mismatched foreground-background (FG-BG) relationships between them, respectively. In this way, the aggressiveness of the affinity learner can be effectively mitigated, thereby eventually increasing the segmentation accuracy of our PAHNet method. Experimental results show that PAHNet outperforms most recently proposed methods across 1-shot and 5-shot settings on both PASCAL-5$^i$ and COCO-20$^i$ datasets, suggesting its effectiveness. The code is available at: [GitHub - tianyu-zou/PAHNet: Balancing Conservatism and Aggressiveness: Prototype-Affinity Hybrid Network for Few-Shot Segmentation (ICCV'25)](https://github.com/tianyu-zou/PAHNet)
Related papers
- ICAS: Detecting Training Data from Autoregressive Image Generative Models [38.1625974271413]
Training data detection has emerged as a critical task for identifying unauthorized data usage in model training.<n>We conduct the first study applying membership inference to this domain.<n>Our approach exhibits strong robustness and generalization under various data transformations.
arXiv Detail & Related papers (2025-07-07T14:50:42Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
This paper revisits few-shot 3D point cloud semantic segmentation (FS-PCS)
We focus on two significant issues in the state-of-the-art: foreground leakage and sparse point distribution.
To address these issues, we introduce a standardized FS-PCS setting, upon which a new benchmark is built.
arXiv Detail & Related papers (2024-03-01T15:14:47Z) - Fine-Grained Prototypes Distillation for Few-Shot Object Detection [8.795211323408513]
Few-shot object detection (FSOD) aims at extending a generic detector for novel object detection with only a few training examples.
In general, methods based on meta-learning employ an additional support branch to encode novel examples into class prototypes.
New methods are required to capture the distinctive local context for more robust novel object detection.
arXiv Detail & Related papers (2024-01-15T12:12:48Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
We propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets.
We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes.
We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models.
arXiv Detail & Related papers (2022-11-16T21:55:05Z) - Learning What Not to Segment: A New Perspective on Few-Shot Segmentation [63.910211095033596]
Recently few-shot segmentation (FSS) has been extensively developed.
This paper proposes a fresh and straightforward insight to alleviate the problem.
In light of the unique nature of the proposed approach, we also extend it to a more realistic but challenging setting.
arXiv Detail & Related papers (2022-03-15T03:08:27Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - Prototype Completion for Few-Shot Learning [13.63424509914303]
Few-shot learning aims to recognize novel classes with few examples.
Pre-training based methods effectively tackle the problem by pre-training a feature extractor and then fine-tuning it through the nearest centroid based meta-learning.
We propose a novel prototype completion based meta-learning framework.
arXiv Detail & Related papers (2021-08-11T03:44:00Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results.
Few-shot segmentation is proposed to tackle this problem by learning a model that quickly adapts to new classes with a few labeled support samples.
Theses frameworks still face the challenge of generalization ability reduction on unseen classes due to inappropriate use of high-level semantic information.
arXiv Detail & Related papers (2020-08-04T10:41:32Z) - Explanation-Guided Training for Cross-Domain Few-Shot Classification [96.12873073444091]
Cross-domain few-shot classification task (CD-FSC) combines few-shot classification with the requirement to generalize across domains represented by datasets.
We introduce a novel training approach for existing FSC models.
We show that explanation-guided training effectively improves the model generalization.
arXiv Detail & Related papers (2020-07-17T07:28:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.