Smooth Reading: Bridging the Gap of Recurrent LLM to Self-Attention LLM on Long-Context Tasks
- URL: http://arxiv.org/abs/2507.19353v1
- Date: Fri, 25 Jul 2025 15:02:45 GMT
- Title: Smooth Reading: Bridging the Gap of Recurrent LLM to Self-Attention LLM on Long-Context Tasks
- Authors: Kai Liu, Zhan Su, Peijie Dong, Fengran Mo, Jianfei Gao, ShaoTing Zhang, Kai Chen,
- Abstract summary: We propose Smooth Reading, a chunk-wise inference method inspired by human reading strategies.<n>Our experimental results show that this method substantially narrows the performance gap between Recurrent and Self-Attention LLMs on long-context tasks.<n>Our method maintains the high efficiency, training 3x faster and inferring 2x faster at 64k context compared to Self-Attention LLMs.
- Score: 22.376992141725495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, recurrent large language models (Recurrent LLMs) with linear computational complexity have re-emerged as efficient alternatives to self-attention-based LLMs (Self-Attention LLMs), which have quadratic complexity. However, Recurrent LLMs often underperform on long-context tasks due to their limited fixed-size memory. Previous research has primarily focused on enhancing the memory capacity of Recurrent LLMs through architectural innovations, but these approaches have not yet enabled Recurrent LLMs to match the performance of Self-Attention LLMs on long-context tasks. We argue that this limitation arises because processing the entire context at once is not well-suited for Recurrent LLMs. In this paper, we propose Smooth Reading, a chunk-wise inference method inspired by human reading strategies. Smooth Reading processes context in chunks and iteratively summarizes the contextual information, thereby reducing memory demands and making the approach more compatible with Recurrent LLMs. Our experimental results show that this method substantially narrows the performance gap between Recurrent and Self-Attention LLMs on long-context tasks, while preserving the efficiency advantages of Recurrent LLMs. Our Smooth Reading boosts SWA-3B-4k (a Recurrent LLM) from 5.68% lower to 3.61% higher performance than Self-Attention LLMs on LongBench. Besides, our method maintains the high efficiency, training 3x faster and inferring 2x faster at 64k context compared to Self-Attention LLMs. To our knowledge, this is the first work to achieve comparable performance using Recurrent LLMs compared with Self-Attention LLMs on long-context tasks. We hope our method will inspire future research in this area. To facilitate further progress, we will release code and dataset.
Related papers
- LLM4VV: Evaluating Cutting-Edge LLMs for Generation and Evaluation of Directive-Based Parallel Programming Model Compiler Tests [7.6818904666624395]
This paper proposes a dual-LLM system and experiments with the usage of LLMs for the generation of compiler tests.<n>It is evident that LLMs possess the promising potential to generate quality compiler tests and verify them automatically.
arXiv Detail & Related papers (2025-07-29T02:34:28Z) - LongLLaDA: Unlocking Long Context Capabilities in Diffusion LLMs [63.580867975515474]
We present the first systematic investigation comparing the long-context performance of diffusion LLMs and traditional auto-regressive LLMs.<n>We propose LongLLaDA, a training-free method that integrates LLaDA with the NTK-based RoPE extrapolation.
arXiv Detail & Related papers (2025-06-17T11:45:37Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - The Lottery LLM Hypothesis, Rethinking What Abilities Should LLM Compression Preserve? [35.74365188072962]
We present a review of recent advancements in LLMs related to retrieval-augmented generation, multi-step reasoning, external tools, and computational expressivity.<n>We propose a lottery LLM hypothesis suggesting that for a given LLM and task, there exists a smaller lottery LLM capable of producing the same performance as the original LLM.
arXiv Detail & Related papers (2025-02-24T15:39:35Z) - Efficiency Unleashed: Inference Acceleration for LLM-based Recommender Systems with Speculative Decoding [61.45448947483328]
We introduce Lossless Acceleration via Speculative Decoding for LLM-based Recommender Systems (LASER)<n>LASER features a Customized Retrieval Pool to enhance retrieval efficiency and Relaxed Verification to improve the acceptance rate of draft tokens.<n>LASER achieves a 3-5x speedup on public datasets and saves about 67% of computational resources during the online A/B test.
arXiv Detail & Related papers (2024-08-11T02:31:13Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - InfLLM: Training-Free Long-Context Extrapolation for LLMs with an Efficient Context Memory [93.20588235940453]
In this paper, we introduce a training-free memory-based method, InfLLM.
InfLLM stores distant contexts into additional memory units and employs an efficient mechanism to lookup token-relevant units for attention.
Even when the sequence length is scaled to $1,024$K, InfLLM still effectively captures long-distance dependencies.
arXiv Detail & Related papers (2024-02-07T06:50:42Z) - LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning [67.39585115936329]
We argue that LLMs have inherent capabilities to handle long contexts without fine-tuning.
We propose SelfExtend to extend the context window of LLMs by constructing bi-level attention information.
We conduct comprehensive experiments on multiple benchmarks and the results show that our SelfExtend can effectively extend existing LLMs' context window length.
arXiv Detail & Related papers (2024-01-02T18:30:51Z) - Investigating Answerability of LLMs for Long-Form Question Answering [35.41413072729483]
We focus on long-form question answering (LFQA) because it has several practical and impactful applications.
We propose a question-generation method from abstractive summaries and show that generating follow-up questions from summaries of long documents can create a challenging setting.
arXiv Detail & Related papers (2023-09-15T07:22:56Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
Large language models (LLMs) have revolutionized the field of AI, demonstrating unprecedented capacity across various tasks.
In this paper, we propose an efficient LLM inference pipeline that harnesses the power of LLMs.
arXiv Detail & Related papers (2023-05-22T15:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.