BEV-LLM: Leveraging Multimodal BEV Maps for Scene Captioning in Autonomous Driving
- URL: http://arxiv.org/abs/2507.19370v1
- Date: Fri, 25 Jul 2025 15:22:56 GMT
- Title: BEV-LLM: Leveraging Multimodal BEV Maps for Scene Captioning in Autonomous Driving
- Authors: Felix Brandstaetter, Erik Schuetz, Katharina Winter, Fabian Flohr,
- Abstract summary: We introduce BEV-LLM, a lightweight model for 3D captioning of autonomous driving scenes.<n>Despite using a small 1B parameter base model, BEV-LLM achieves competitive performance on the nuCaption dataset.<n>We release two new datasets to better assess scene captioning across diverse driving scenarios.
- Score: 3.061835990893183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving technology has the potential to transform transportation, but its wide adoption depends on the development of interpretable and transparent decision-making systems. Scene captioning, which generates natural language descriptions of the driving environment, plays a crucial role in enhancing transparency, safety, and human-AI interaction. We introduce BEV-LLM, a lightweight model for 3D captioning of autonomous driving scenes. BEV-LLM leverages BEVFusion to combine 3D LiDAR point clouds and multi-view images, incorporating a novel absolute positional encoding for view-specific scene descriptions. Despite using a small 1B parameter base model, BEV-LLM achieves competitive performance on the nuCaption dataset, surpassing state-of-the-art by up to 5\% in BLEU scores. Additionally, we release two new datasets - nuView (focused on environmental conditions and viewpoints) and GroundView (focused on object grounding) - to better assess scene captioning across diverse driving scenarios and address gaps in current benchmarks, along with initial benchmarking results demonstrating their effectiveness.
Related papers
- NuPlanQA: A Large-Scale Dataset and Benchmark for Multi-View Driving Scene Understanding in Multi-Modal Large Language Models [11.184459657989914]
We introduce NuPlanQA-Eval, a multi-view, multi-modal evaluation benchmark for driving scene understanding.<n>We also propose NuPlanQA-1M, a large-scale dataset comprising 1M real-world visual question-answering (VQA) pairs.<n>Our evaluation results reveal key challenges that existing MLLMs face in driving scene-specific perception and spatial reasoning from ego-centric perspectives.
arXiv Detail & Related papers (2025-03-17T03:12:39Z) - MTA: Multimodal Task Alignment for BEV Perception and Captioning [13.25655273023121]
Bird's eye view (BEV)-based 3D perception plays a crucial role in autonomous driving applications.<n>Existing approaches treat perception and captioning as separate tasks, focusing on the performance of only one task.<n>We introduce MTA, a novel multimodal task alignment framework that boosts both BEV perception and captioning.
arXiv Detail & Related papers (2024-11-16T00:14:13Z) - Navigation Instruction Generation with BEV Perception and Large Language Models [60.455964599187205]
We propose BEVInstructor, which incorporates Bird's Eye View (BEV) features into Multi-Modal Large Language Models (MLLMs) for instruction generation.
Specifically, BEVInstructor constructs a PerspectiveBEV for the comprehension of 3D environments through fusing BEV and perspective features.
Based on the perspective-BEV prompts, BEVInstructor further adopts an instance-guided iterative refinement pipeline, which improves the instructions in a progressive manner.
arXiv Detail & Related papers (2024-07-21T08:05:29Z) - OE-BevSeg: An Object Informed and Environment Aware Multimodal Framework for Bird's-eye-view Vehicle Semantic Segmentation [57.2213693781672]
Bird's-eye-view (BEV) semantic segmentation is becoming crucial in autonomous driving systems.
We propose OE-BevSeg, an end-to-end multimodal framework that enhances BEV segmentation performance.
Our approach achieves state-of-the-art results by a large margin on the nuScenes dataset for vehicle segmentation.
arXiv Detail & Related papers (2024-07-18T03:48:22Z) - BEVWorld: A Multimodal World Simulator for Autonomous Driving via Scene-Level BEV Latents [56.33989853438012]
We propose BEVWorld, a framework that transforms multimodal sensor inputs into a unified and compact Bird's Eye View latent space for holistic environment modeling.<n>The proposed world model consists of two main components: a multi-modal tokenizer and a latent BEV sequence diffusion model.
arXiv Detail & Related papers (2024-07-08T07:26:08Z) - Talk2BEV: Language-enhanced Bird's-eye View Maps for Autonomous Driving [23.957306230979746]
Talk2BEV is a vision-language model interface for bird's-eye view (BEV) maps in autonomous driving contexts.
It blends recent advances in general-purpose language and vision models with BEV-structured map representations.
We extensively evaluate Talk2BEV on a large number of scene understanding tasks.
arXiv Detail & Related papers (2023-10-03T17:53:51Z) - Bird's-Eye-View Scene Graph for Vision-Language Navigation [85.72725920024578]
Vision-language navigation (VLN) entails an agent to navigate 3D environments following human instructions.
We present a BEV Scene Graph (BSG), which leverages multi-step BEV representations to encode scene layouts and geometric cues of indoor environment.
Based on BSG, the agent predicts a local BEV grid-level decision score and a global graph-level decision score, combined with a sub-view selection score on panoramic views.
arXiv Detail & Related papers (2023-08-09T07:48:20Z) - SA-BEV: Generating Semantic-Aware Bird's-Eye-View Feature for Multi-view
3D Object Detection [46.92706423094971]
We propose Semantic-Aware BEV Pooling (SA-BEVPool), which can filter out background information according to the semantic segmentation of image features.
We also propose BEV-Paste, an effective data augmentation strategy that closely matches with semantic-aware BEV feature.
Experiments on nuScenes show that SA-BEV achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-21T10:28:19Z) - Street-View Image Generation from a Bird's-Eye View Layout [95.36869800896335]
Bird's-Eye View (BEV) Perception has received increasing attention in recent years.
Data-driven simulation for autonomous driving has been a focal point of recent research.
We propose BEVGen, a conditional generative model that synthesizes realistic and spatially consistent surrounding images.
arXiv Detail & Related papers (2023-01-11T18:39:34Z) - BEVerse: Unified Perception and Prediction in Birds-Eye-View for
Vision-Centric Autonomous Driving [92.05963633802979]
We present BEVerse, a unified framework for 3D perception and prediction based on multi-camera systems.
We show that the multi-task BEVerse outperforms single-task methods on 3D object detection, semantic map construction, and motion prediction.
arXiv Detail & Related papers (2022-05-19T17:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.