Running in CIRCLE? A Simple Benchmark for LLM Code Interpreter Security
- URL: http://arxiv.org/abs/2507.19399v1
- Date: Fri, 25 Jul 2025 16:06:16 GMT
- Title: Running in CIRCLE? A Simple Benchmark for LLM Code Interpreter Security
- Authors: Gabriel Chua,
- Abstract summary: Large language models (LLMs) increasingly integrate native code interpreters, enabling real-time execution capabilities.<n>These integrations introduce potential system-level cybersecurity threats, fundamentally different from prompt-based vulnerabilities.<n>We propose CIRCLE (Code-Interpreter Resilience Check for LLM Exploits), a simple benchmark comprising 1,260 prompts targeting CPU, memory, and disk resource exhaustion.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) increasingly integrate native code interpreters, they enable powerful real-time execution capabilities, substantially expanding their utility. However, such integrations introduce potential system-level cybersecurity threats, fundamentally different from prompt-based vulnerabilities. To systematically evaluate these interpreter-specific risks, we propose CIRCLE (Code-Interpreter Resilience Check for LLM Exploits), a simple benchmark comprising 1,260 prompts targeting CPU, memory, and disk resource exhaustion. Each risk category includes explicitly malicious ("direct") and plausibly benign ("indirect") prompt variants. Our automated evaluation framework assesses not only whether LLMs refuse or generates risky code, but also executes the generated code within the interpreter environment to evaluate code correctness, simplifications made by the LLM to make the code safe, or execution timeouts. Evaluating 7 commercially available models from OpenAI and Google, we uncover significant and inconsistent vulnerabilities. For instance, evaluations show substantial disparities even within providers - OpenAI's o4-mini correctly refuses risky requests at 7.1%, notably higher rates compared to GPT-4.1 at 0.5%. Results particularly underscore that indirect, socially-engineered prompts substantially weaken model defenses. This highlights an urgent need for interpreter-specific cybersecurity benchmarks, dedicated mitigation tools (e.g., guardrails), and clear industry standards to guide safe and responsible deployment of LLM interpreter integrations. The benchmark dataset and evaluation code are publicly released to foster further research.
Related papers
- SafeGenBench: A Benchmark Framework for Security Vulnerability Detection in LLM-Generated Code [7.209766132478914]
We introduce SafeGenBench, a benchmark specifically designed to assess the security of LLM-generated code.<n>The dataset encompasses a wide range of common software development scenarios and vulnerability types.<n>Through the empirical evaluation of state-of-the-art LLMs on SafeGenBench, we reveal notable deficiencies in their ability to produce vulnerability-free code.
arXiv Detail & Related papers (2025-06-06T02:48:02Z) - Benchmarking LLMs and LLM-based Agents in Practical Vulnerability Detection for Code Repositories [8.583591493627276]
We introduce JitVul, a vulnerability detection benchmark linking each function to its vulnerability-introducing and fixing commits.<n>We show that ReAct Agents, leveraging thought-action-observation and interprocedural context, perform better than LLMs in distinguishing vulnerable from benign code.
arXiv Detail & Related papers (2025-03-05T15:22:24Z) - Automating Prompt Leakage Attacks on Large Language Models Using Agentic Approach [9.483655213280738]
This paper presents a novel approach to evaluating the security of large language models (LLMs)<n>We define prompt leakage as a critical threat to secure LLM deployment.<n>We implement a multi-agent system where cooperative agents are tasked with probing and exploiting the target LLM to elicit its prompt.
arXiv Detail & Related papers (2025-02-18T08:17:32Z) - BackdoorLLM: A Comprehensive Benchmark for Backdoor Attacks and Defenses on Large Language Models [27.59116619946915]
Generative large language models (LLMs) have achieved state-of-the-art results on a wide range of tasks, yet they remain susceptible to backdoor attacks.<n>BackdoorLLM is the first comprehensive benchmark for systematically evaluating backdoor threats in text-generation LLMs.<n>BackdoorLLM provides: (i) a unified repository of benchmarks with a standardized training and evaluation pipeline; (ii) a diverse suite of attack modalities, including data poisoning, weight poisoning, hidden-state manipulation, and chain-of-thought hijacking; (iii) over 200 experiments spanning 8 distinct attack strategies, 7 real-
arXiv Detail & Related papers (2024-08-23T02:21:21Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal [64.9938658716425]
SORRY-Bench is a proposed benchmark for evaluating large language models' (LLMs) ability to recognize and reject unsafe user requests.<n>First, existing methods often use coarse-grained taxonomy of unsafe topics, and are over-representing some fine-grained topics.<n>Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations.
arXiv Detail & Related papers (2024-06-20T17:56:07Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERT is a large-scale benchmark to assess safety based on a novel fine-grained risk taxonomy.
It aims to identify vulnerabilities, inform improvements, and enhance the overall safety of the language models.
arXiv Detail & Related papers (2024-04-06T15:01:47Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.<n>Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.<n>We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
We evaluate the effectiveness of 16 pre-trained Large Language Models on 5,000 code samples from five diverse security datasets.
Overall, LLMs show modest effectiveness in detecting vulnerabilities, obtaining an average accuracy of 62.8% and F1 score of 0.71 across datasets.
We find that advanced prompting strategies that involve step-by-step analysis significantly improve performance of LLMs on real-world datasets in terms of F1 score (by upto 0.18 on average)
arXiv Detail & Related papers (2023-11-16T13:17:20Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
This paper collects the first open-source dataset to evaluate safeguards in large language models.
We train several BERT-like classifiers to achieve results comparable with GPT-4 on automatic safety evaluation.
arXiv Detail & Related papers (2023-08-25T14:02:12Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
Large language models (LLMs) may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes.
To promote the deployment of safe, responsible, and ethical AI, we release SafetyPrompts including 100k augmented prompts and responses by LLMs.
arXiv Detail & Related papers (2023-04-20T16:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.