Enhancing Spatiotemporal Networks with xLSTM: A Scalar LSTM Approach for Cellular Traffic Forecasting
- URL: http://arxiv.org/abs/2507.19513v1
- Date: Thu, 17 Jul 2025 22:48:46 GMT
- Title: Enhancing Spatiotemporal Networks with xLSTM: A Scalar LSTM Approach for Cellular Traffic Forecasting
- Authors: Khalid Ali, Zineddine Bettouche, Andreas Kassler, Andreas Fischer,
- Abstract summary: We introduce a lightweight, dual-path Spatiotemporal Network that leverages a gradientr LSTM for efficient modeling and a three-layer Conv3D module for spatial feature extraction.<n>We show superior forecast performance over ConvLSTM baselines and strong generalization to unseen regions, making it well-suited for large-scale next-generation network deployments.
- Score: 0.7111641404908191
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate spatiotemporal traffic forecasting is vital for intelligent resource management in 5G and beyond. However, conventional AI approaches often fail to capture the intricate spatial and temporal patterns that exist, due to e.g., the mobility of users. We introduce a lightweight, dual-path Spatiotemporal Network that leverages a Scalar LSTM (sLSTM) for efficient temporal modeling and a three-layer Conv3D module for spatial feature extraction. A fusion layer integrates both streams into a cohesive representation, enabling robust forecasting. Our design improves gradient stability and convergence speed while reducing prediction error. Evaluations on real-world datasets show superior forecast performance over ConvLSTM baselines and strong generalization to unseen regions, making it well-suited for large-scale, next-generation network deployments. Experimental evaluation shows a 23% MAE reduction over ConvLSTM, with a 30% improvement in model generalization.
Related papers
- TeZO: Empowering the Low-Rankness on the Temporal Dimension in the Zeroth-Order Optimization for Fine-tuning LLMs [58.19080159470868]
We propose a novel low-rank ZO estimator, TeZO, which captures the low-rankness across both the model and temporal dimension.<n>Specifically, we represent ZO perturbations along the temporal dimension as a 3D tensor and employ Canonical Polyadic Decomposition (CPD) to extract each low-rank 2D matrix.
arXiv Detail & Related papers (2025-01-31T11:34:03Z) - ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
Existing methods prioritize higher accuracy to cater to the demands of these tasks.
We introduce a series of targeted improvements for 3D semantic occupancy prediction and flow estimation.
Our purelytemporalal architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy.
arXiv Detail & Related papers (2024-11-12T11:32:56Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - ConvLSTMTransNet: A Hybrid Deep Learning Approach for Internet Traffic Telemetry [0.0]
We present a novel hybrid deep learning model, named ConvLSTMTransNet, designed for time series prediction.
Our findings demonstrate that ConvLSTMTransNet significantly outperforms the baseline models by approximately 10% in terms of prediction accuracy.
arXiv Detail & Related papers (2024-09-20T03:12:57Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Rethinking Spatio-Temporal Transformer for Traffic Prediction:Multi-level Multi-view Augmented Learning Framework [4.773547922851949]
Traffic is a challenging-temporal forecasting problem that involves highly complex semantic correlations.
This paper proposes a Multi-level Multi-view Augmented-temporal Transformer (LVST) for traffic prediction.
arXiv Detail & Related papers (2024-06-17T07:36:57Z) - A-SDM: Accelerating Stable Diffusion through Model Assembly and Feature Inheritance Strategies [51.7643024367548]
Stable Diffusion Model is a prevalent and effective model for text-to-image (T2I) and image-to-image (I2I) generation.
This study focuses on reducing redundant computation in SDM and optimizing the model through both tuning and tuning-free methods.
arXiv Detail & Related papers (2024-05-31T21:47:05Z) - Network Level Spatial Temporal Traffic State Forecasting with Hierarchical-Attention-LSTM (HierAttnLSTM) [0.0]
This paper leverages diverse traffic state datasets from the Caltrans Performance Measurement System (PeMS) hosted on the open benchmark.<n>We integrate cell and hidden states from low-level to high-level Long Short-Term Memory (LSTM) networks with an attention pooling mechanism.<n>The developed hierarchical structure is designed to account for dependencies across different time scales, capturing the spatial-temporal correlations of network-level traffic states.
arXiv Detail & Related papers (2022-01-15T05:25:03Z) - Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network
for Forecasting Network-wide Traffic State with Missing Values [23.504633202965376]
We focus on RNN-based models and attempt to reformulate the way to incorporate RNN and its variants into traffic prediction models.
A stacked bidirectional and unidirectional LSTM network architecture (SBU-LSTM) is proposed to assist the design of neural network structures for traffic state forecasting.
We also propose a data imputation mechanism in the LSTM structure (LSTM-I) by designing an imputation unit to infer missing values and assist traffic prediction.
arXiv Detail & Related papers (2020-05-24T00:17:15Z) - A Hybrid Residual Dilated LSTM end Exponential Smoothing Model for
Mid-Term Electric Load Forecasting [1.1602089225841632]
The model combines exponential smoothing (ETS), advanced Long Short-Term Memory (LSTM) and ensembling.
A simulation study performed on the monthly electricity demand time series for 35 European countries confirmed the high performance of the proposed model.
arXiv Detail & Related papers (2020-03-29T10:53:50Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
This paper proposes LaMI (Latency Model Inpainting), a novel framework to generate a comprehensive-temporal quality framework for wireless access latency of connected vehicles.
LaMI adopts the idea from image inpainting and synthesizing and can reconstruct the missing latency samples by a two-step procedure.
In particular, it first discovers the spatial correlation between samples collected in various regions using a patching-based approach and then feeds the original and highly correlated samples into a Varienational Autocoder (VAE)
arXiv Detail & Related papers (2020-03-16T03:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.