Applications and Manipulations of Physics-Informed Neural Networks in Solving Differential Equations
- URL: http://arxiv.org/abs/2507.19522v1
- Date: Sat, 19 Jul 2025 03:39:49 GMT
- Title: Applications and Manipulations of Physics-Informed Neural Networks in Solving Differential Equations
- Authors: Aarush Gupta, Kendric Hsu, Syna Mathod,
- Abstract summary: A Physics-Informed Neural Network (PINN) can solve both forward and inverse problems.<n> PINNs inject prior analytical information about the data into the cost function to improve model performance outside the training set boundaries.<n>We will create PINNs with residuals of varying complexity, beginning with linear and quadratic models and then expanding to fit models for the heat equation and other complex differential equations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mathematical models in neural networks are powerful tools for solving complex differential equations and optimizing their parameters; that is, solving the forward and inverse problems, respectively. A forward problem predicts the output of a network for a given input by optimizing weights and biases. An inverse problem finds equation parameters or coefficients that effectively model the data. A Physics-Informed Neural Network (PINN) can solve both problems. PINNs inject prior analytical information about the data into the cost function to improve model performance outside the training set boundaries. This also allows PINNs to efficiently solve problems with sparse data without overfitting by extrapolating the model to fit larger trends in the data. The prior information we implement is in the form of differential equations. Residuals are the differences between the left-hand and right-hand sides of corresponding differential equations; PINNs minimize these residuals to effectively solve the differential equation and take advantage of prior knowledge. In this way, the solution and parameters are embedded into the loss function and optimized, allowing both the weights of the neural network and the model parameters to be found simultaneously, solving both the forward and inverse problems in the process. In this paper, we will create PINNs with residuals of varying complexity, beginning with linear and quadratic models and then expanding to fit models for the heat equation and other complex differential equations. We will mainly use Python as the computing language, using the PyTorch library to aid us in our research.
Related papers
- PINNverse: Accurate parameter estimation in differential equations from noisy data with constrained physics-informed neural networks [0.0]
Physics-Informed Neural Networks (PINNs) have emerged as effective tools for solving such problems.<n>We introduce PINNverse, a training paradigm that addresses these limitations by reformulating the learning process as a constrained differential optimization problem.<n>We demonstrate robust and accurate parameter estimation from noisy data in four classical ODE and PDE models from physics and biology.
arXiv Detail & Related papers (2025-04-07T16:34:57Z) - Differentiable Visual Computing for Inverse Problems and Machine
Learning [27.45555082573493]
Visual computing methods are used to analyze geometry, physically simulate solids, fluids, and other media, and render the world via optical techniques.
Deep learning (DL) allows for the construction of general algorithmic models, side stepping the need for a purely first principles-based approach to problem solving.
DL is powered by highly parameterized neural network architectures -- universal function approximators -- and gradient-based search algorithms.
arXiv Detail & Related papers (2023-11-21T23:02:58Z) - Physics-guided Data Augmentation for Learning the Solution Operator of
Linear Differential Equations [2.1850269949775663]
We propose a physics-guided data augmentation (PGDA) method to improve the accuracy and generalization of neural operator models.
We demonstrate the advantage of PGDA on a variety of linear differential equations, showing that PGDA can improve the sample complexity and is robust to distributional shift.
arXiv Detail & Related papers (2022-12-08T06:29:15Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
We develop a physics-informed neural network (PINN) model for parabolic problems with a sharply perturbed initial condition.
Localized large gradients in the ADE solution make the (common in PINN) Latin hypercube sampling of the equation's residual highly inefficient.
We propose criteria for weights in the loss function that produce a more accurate PINN solution than those obtained with the weights selected via other methods.
arXiv Detail & Related papers (2022-08-18T05:00:24Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
We propose LordNet, a tunable and efficient neural network for modeling entanglements.
The experiments on solving Poisson's equation and (2D and 3D) Navier-Stokes equation demonstrate that the long-range entanglements can be well modeled by the LordNet.
arXiv Detail & Related papers (2022-06-19T14:41:08Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
In many application domains across science and engineering, we are interested in solving inverse problems with constraints defined by a partial differential equation (PDE)
Here we explore GNNs to solve such PDE-constrained inverse problems.
We demonstrate computational speedups of up to 90x using GNNs compared to principled solvers.
arXiv Detail & Related papers (2022-06-01T18:48:01Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Study of Drug Assimilation in Human System using Physics Informed Neural
Networks [0.0]
We study two mathematical models of a drug assimilation in the human system using Physics Informed Neural Networks (PINNs)
The resulting differential equations are solved using PINN, where we employ a feed forward multilayer perceptron as function approxor and the network parameters are tuned for minimum error.
We have employed DeepXDE, a python library for PINNs, to solve the simultaneous first order differential equations describing the two models of drug assimilation.
arXiv Detail & Related papers (2021-10-08T07:46:46Z) - IDRLnet: A Physics-Informed Neural Network Library [9.877979064734802]
Physics Informed Neural Network (PINN) is a scientific computing framework used to solve both forward and inverse problems.
This paper introduces IDRLnet, a Python toolbox for modeling and solving problems through PINN systematically.
arXiv Detail & Related papers (2021-07-09T09:18:35Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.