Kolmogorov Arnold Network Autoencoder in Medicine
- URL: http://arxiv.org/abs/2507.19524v1
- Date: Sat, 19 Jul 2025 06:50:50 GMT
- Title: Kolmogorov Arnold Network Autoencoder in Medicine
- Authors: Ugo Lomoio, Pierangelo Veltri, Pietro Hiram Guzzi,
- Abstract summary: Recent work introduced a new architecture called Kolmogorov Arnold Networks (KAN) that reports how putting learnable activation functions on the edges of the neural network leads to better performances in multiple scenarios.<n>This study aims to benchmark multiple versions of vanilla AEs (such as Linear, Convolutional and Variational) against their Kolmogorov-Arnold counterparts that have same or less number of parameters.<n>Using cardiological signals as model input, a total of five different classic AE tasks were studied: reconstruction, generation, denoising, inpainting and anomaly detection.
- Score: 1.9662978733004604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning neural networks architectures such Multi Layer Perceptrons (MLP) and Convolutional blocks still play a crucial role in nowadays research advancements. From a topological point of view, these architecture may be represented as graphs in which we learn the functions related to the nodes while fixed edges convey the information from the input to the output. A recent work introduced a new architecture called Kolmogorov Arnold Networks (KAN) that reports how putting learnable activation functions on the edges of the neural network leads to better performances in multiple scenarios. Multiple studies are focusing on optimizing the KAN architecture by adding important features such as dropout regularization, Autoencoders (AE), model benchmarking and last, but not least, the KAN Convolutional Network (KCN) that introduced matrix convolution with KANs learning. This study aims to benchmark multiple versions of vanilla AEs (such as Linear, Convolutional and Variational) against their Kolmogorov-Arnold counterparts that have same or less number of parameters. Using cardiological signals as model input, a total of five different classic AE tasks were studied: reconstruction, generation, denoising, inpainting and anomaly detection. The proposed experiments uses a medical dataset \textit{AbnormalHeartbeat} that contains audio signals obtained from the stethoscope.
Related papers
- KAE: Kolmogorov-Arnold Auto-Encoder for Representation Learning [2.6713407440802253]
The Kolmogorov-Arnold Network (KAN) has recently gained attention as an alternative to traditional multi-layer perceptrons (MLPs)<n>In this paper, we introduce the Kolmogorov-Arnold AutoEncoder (KAE), which integrates KAN with autoencoders (AEs)<n> Experiments on benchmark datasets demonstrate that KAE improves latent representation quality, reduces reconstruction errors, and achieves superior performance in downstream tasks.
arXiv Detail & Related papers (2024-12-31T12:49:03Z) - Kolmogorov-Arnold Network Autoencoders [0.0]
Kolmogorov-Arnold Networks (KANs) are promising alternatives to Multi-Layer Perceptrons (MLPs)
KANs align closely with the Kolmogorov-Arnold representation theorem, potentially enhancing both model accuracy and interpretability.
Our results demonstrate that KAN-based autoencoders achieve competitive performance in terms of reconstruction accuracy.
arXiv Detail & Related papers (2024-10-02T22:56:00Z) - U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation [48.40120035775506]
Kolmogorov-Arnold Networks (KANs) reshape the neural network learning via the stack of non-linear learnable activation functions.
We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN.
We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures.
arXiv Detail & Related papers (2024-06-05T04:13:03Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - ASU-CNN: An Efficient Deep Architecture for Image Classification and
Feature Visualizations [0.0]
Activation functions play a decisive role in determining the capacity of Deep Neural Networks.
In this paper, a Convolutional Neural Network model named as ASU-CNN is proposed.
The network achieved promising results on both training and testing data for the classification of CIFAR-10.
arXiv Detail & Related papers (2023-05-28T16:52:25Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
We study the potential of learning a neural network for classification with the classifier randomly as an ETF and fixed during training.
Our experimental results show that our method is able to achieve similar performances on image classification for balanced datasets.
arXiv Detail & Related papers (2022-03-17T04:34:28Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
We propose a novel incrementally trained recurrent architecture targeting explicitly multi-scale learning.
We show how to extend the architecture of a simple RNN by separating its hidden state into different modules.
We discuss a training algorithm where new modules are iteratively added to the model to learn progressively longer dependencies.
arXiv Detail & Related papers (2020-06-29T08:35:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.