FedDPG: An Adaptive Yet Efficient Prompt-tuning Approach in Federated Learning Settings
- URL: http://arxiv.org/abs/2507.19534v1
- Date: Tue, 22 Jul 2025 03:47:12 GMT
- Title: FedDPG: An Adaptive Yet Efficient Prompt-tuning Approach in Federated Learning Settings
- Authors: Ali Shakeri, Wei Emma Zhang, Amin Beheshti, Weitong Chen, Jian Yang, Lishan Yang,
- Abstract summary: This paper introduces the Federated Dynamic Prompt Generator (FedDPG)<n>FedDPG incorporates a dynamic prompt generator network to generate context-aware prompts based on the given input.<n>Experiments on three NLP benchmark datasets showcase that FedDPG outperforms the state-of-the-art parameter-efficient fine-tuning methods in terms of global model performance.
- Score: 23.33217268142489
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Pre-trained Language Models (PLMs) have demonstrated impressive performance in various NLP tasks. However, traditional fine-tuning methods for leveraging PLMs for downstream tasks entail significant computational overhead. Prompt-tuning has emerged as an efficient alternative that involves prepending a limited number of parameters to the input sequence and only updating them while the PLM's parameters are frozen. However, this technique's prompts remain fixed for all inputs, reducing the model's flexibility. The Federated Learning (FL) technique has gained attention in recent years to address the growing concerns around data privacy. However, challenges such as communication and computation limitations of clients still need to be addressed. To mitigate these challenges, this paper introduces the Federated Dynamic Prompt Generator (FedDPG), which incorporates a dynamic prompt generator network to generate context-aware prompts based on the given input, ensuring flexibility and adaptability while prioritising data privacy in federated learning settings. Our experiments on three NLP benchmark datasets showcase that FedDPG outperforms the state-of-the-art parameter-efficient fine-tuning methods in terms of global model performance, and has significantly reduced the calculation time and the number of parameters to be sent through the FL network.
Related papers
- EKPC: Elastic Knowledge Preservation and Compensation for Class-Incremental Learning [53.88000987041739]
Class-Incremental Learning (CIL) aims to enable AI models to continuously learn from sequentially arriving data of different classes over time.<n>We propose the Elastic Knowledge Preservation and Compensation (EKPC) method, integrating Importance-aware importance Regularization (IPR) and Trainable Semantic Drift Compensation (TSDC) for CIL.
arXiv Detail & Related papers (2025-06-14T05:19:58Z) - Leveraging Self-Attention for Input-Dependent Soft Prompting in LLMs [17.838462425090498]
This paper focuses on parameter-efficient fine-tuning using soft prompting.<n>We propose a novel Input Dependent Soft Prompting technique with a self-Attention Mechanism (ID-SPAM)<n>We show the merits of the proposed approach compared to state-of-the-art techniques on various tasks and show the improved zero shot domain transfer capability.
arXiv Detail & Related papers (2025-06-05T23:13:22Z) - FedRTS: Federated Robust Pruning via Combinatorial Thompson Sampling [12.067872131025231]
Federated Learning (FL) enables collaborative model training across distributed clients without data sharing.<n>Current methods use dynamic pruning to improve efficiency by periodically adjusting sparse model topologies while maintaining sparsity.<n>We propose Federated Robust pruning via Thompson Sampling (FedRTS), a novel framework designed to develop robust sparse models.
arXiv Detail & Related papers (2025-01-31T13:26:22Z) - Refining Salience-Aware Sparse Fine-Tuning Strategies for Language Models [14.68920095399595]
sparsity-based PEFT (SPEFT) introduces trainable sparse adaptations to the weight matrices in the model.<n>We conduct the first systematic evaluation of salience metrics for SPEFT, inspired by zero-cost NAS proxies.<n>We compare static and dynamic masking strategies, finding that static masking, which predetermines non-zero entries before training, delivers efficiency without sacrificing performance.
arXiv Detail & Related papers (2024-12-18T04:14:35Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
We introduce a technique to enhance the inference efficiency of parameter-shared language models.
We also propose a simple pre-training technique that leads to fully or partially shared models.
Results demonstrate the effectiveness of our methods on both autoregressive and autoencoding PLMs.
arXiv Detail & Related papers (2023-10-19T15:13:58Z) - Efficient Federated Prompt Tuning for Black-box Large Pre-trained Models [62.838689691468666]
We propose Federated Black-Box Prompt Tuning (Fed-BBPT) to optimally harness each local dataset.
Fed-BBPT capitalizes on a central server that aids local users in collaboratively training a prompt generator through regular aggregation.
Relative to extensive fine-tuning, Fed-BBPT proficiently sidesteps memory challenges tied to PTM storage and fine-tuning on local machines.
arXiv Detail & Related papers (2023-10-04T19:30:49Z) - FedBPT: Efficient Federated Black-box Prompt Tuning for Large Language
Models [22.29061931122386]
Pre-trained language models (PLM) have revolutionized the NLP landscape, achieving stellar performances across diverse tasks.
This paper introduces Federated Black-box Prompt Tuning (FedBPT), a framework designed to address these challenges.
arXiv Detail & Related papers (2023-10-02T16:43:14Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
In vision-language pre-trained models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks.
We propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning.
arXiv Detail & Related papers (2023-06-27T05:43:47Z) - Parameter-Efficient Fine-Tuning without Introducing New Latency [7.631596468553607]
We introduce a novel adapter technique that directly applies the adapter to pre-trained parameters instead of the hidden representation.
Our proposed method attains a new state-of-the-art outcome in terms of both performance and storage efficiency, storing only 0.03% parameters of full fine-tuning.
arXiv Detail & Related papers (2023-05-26T08:44:42Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
Instance-wise Prompt Tuning (IPT) is the first prompt learning paradigm that injects knowledge from the input data instances to the prompts.
IPT significantly outperforms task-based prompt learning methods, and achieves comparable performance to conventional finetuning with only 0.5% - 1.5% of tuned parameters.
arXiv Detail & Related papers (2022-06-04T10:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.