論文の概要: Agent WARPP: Workflow Adherence via Runtime Parallel Personalization
- arxiv url: http://arxiv.org/abs/2507.19543v1
- Date: Wed, 23 Jul 2025 23:27:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:55.572115
- Title: Agent WARPP: Workflow Adherence via Runtime Parallel Personalization
- Title(参考訳): Agent WARPP: 実行時並列パーソナライゼーションによるワークフローの整合性
- Authors: Maria Emilia Mazzolenis, Ruirui Zhang,
- Abstract要約: 大規模言語モデル(LLM)はタスク指向対話(TOD)システムにますます適用されてきている。
並列パーソナライゼーション(WARPP)は、マルチエージェントランタイムとオーケストレーションを組み合わせた、トレーニング不要でモジュール化されたフレームワークである。
ユーザ属性に基づいて条件分岐を動的にプルーニングすることで、このフレームワークは推論のオーバーヘッドを減らし、実行時のツール選択を狭める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are increasingly applied in task-oriented dialogue (TOD) systems but often struggle with long, conditional workflows that involve external tool calls and depend on user-specific information. We present Workflow Adherence via Runtime Parallel Personalization, or WARPP, a training-free, modular framework that combines multi-agent orchestration with runtime personalization to improve workflow adherence in LLM-based systems. By dynamically pruning conditional branches based on user attributes, the framework reduces reasoning overhead and narrows tool selection at runtime. WARPP deploys a parallelized architecture where a dedicated Personalizer agent operates alongside modular, domain-specific agents to dynamically tailor execution paths in real time. The framework is evaluated across five representative user intents of varying complexity within three domains: banking, flights, and healthcare. Our evaluation leverages synthetic datasets and LLM-powered simulated users to test scenarios with conditional dependencies. Our results demonstrate that WARPP outperforms both the non-personalized method and the ReAct baseline, achieving increasingly larger gains in parameter fidelity and tool accuracy as intent complexity grows, while also reducing average token usage, without any additional training.
- Abstract(参考訳): 大規模言語モデル(LLM)はタスク指向対話(TOD)システムにますます適用されるが、外部ツールコールとユーザ固有の情報に依存する長い条件付きワークフローに苦慮することが多い。
我々は、マルチエージェントオーケストレーションとランタイムパーソナライゼーションを組み合わせて、LLMベースのシステムにおけるワークフローの定着を改善する、トレーニング不要でモジュール化されたフレームワークであるWARPP(Workflow Adherence via Runtime Parallel Personalization)を提案する。
ユーザ属性に基づいて条件分岐を動的にプルーニングすることで、このフレームワークは推論のオーバーヘッドを減らし、実行時のツール選択を狭める。
WARPPは並列アーキテクチャをデプロイし、専用のPersonalizerエージェントがモジュール化されたドメイン固有のエージェントと並行して動作し、動的に実行パスを動的に調整する。
このフレームワークは、銀行、フライト、ヘルスケアの3つの領域において、さまざまな複雑さの5つの代表的ユーザ意図で評価されている。
本評価では, 合成データセットとLLMを用いたシミュレーションユーザを用いて, 条件依存型シナリオのテストを行う。
その結果、WARPPは非個人化手法とReActベースラインの両方より優れており、意図複雑性が増大するにつれてパラメータの忠実度やツールの精度が向上し、付加的なトレーニングを伴わずに平均トークン使用量を削減できることを示した。
関連論文リスト
- HAWK: A Hierarchical Workflow Framework for Multi-Agent Collaboration [3.2588674134593942]
マルチエージェントシステムは、クロスプラットフォームの相互運用性、動的タスクスケジューリング、効率的なリソース共有において永続的な課題に直面している。
階層型エージェント (Hawk) は, ユーザ, オペレータ, エージェント, リソースの5つのレイヤから構成され, 16の標準化インターフェースでサポートされているモジュール型フレームワークである。
Hawkはタスク解析、ワークフローオーケストレーション、インテリジェントスケジューリング、リソース呼び出し、データ同期をカバーしたエンドツーエンドパイプラインを提供する。
論文 参考訳(メタデータ) (2025-07-05T15:03:53Z) - PersonaAgent: When Large Language Model Agents Meet Personalization at Test Time [87.99027488664282]
PersonaAgentは、汎用的なパーソナライゼーションタスクに対処するために設計されたフレームワークである。
パーソナライズされたメモリモジュールとパーソナライズされたアクションモジュールを統合する。
テストタイムのユーザ嗜好アライメント戦略は、リアルタイムのユーザの嗜好アライメントを保証する。
論文 参考訳(メタデータ) (2025-06-06T17:29:49Z) - ARPO:End-to-End Policy Optimization for GUI Agents with Experience Replay [88.74638385288773]
Agentic Replay Policy Optimizationは、複雑で長期のコンピュータタスクのパフォーマンスを改善する。
本稿では,ベースラインエージェントの性能に基づいてタスクをフィルタリングするタスク選択戦略を提案する。
OSWorldベンチマークの実験では、ARPOが競争結果を達成することを示した。
論文 参考訳(メタデータ) (2025-05-22T06:24:32Z) - Dynamic benchmarking framework for LLM-based conversational data capture [0.0]
本稿では,大規模言語モデル(LLM)を評価するためのベンチマークフレームワークを提案する。
生成エージェントシミュレーションを統合して、情報抽出、コンテキスト認識、適応エンゲージメントといった重要次元のパフォーマンスを評価する。
その結果,不明瞭な応答を扱う場合,適応戦略によりデータの抽出精度が向上することが示唆された。
論文 参考訳(メタデータ) (2025-02-04T15:47:47Z) - Flow: Modularized Agentic Workflow Automation [53.073598156915615]
大規模言語モデル(LLM)を利用したマルチエージェントフレームワークは、自動計画とタスク実行において大きな成功を収めている。
しかし, 実行中のエージェントの効果的な調整は十分に研究されていない。
本稿では,エージェントによる継続的なワークフロー改善を可能にするアクティビティ・オン・頂点(AOV)グラフを定義する。
提案するマルチエージェントフレームワークは,サブタスクの効率的な同時実行,効果的なゴール達成,エラー耐性の向上を実現している。
論文 参考訳(メタデータ) (2025-01-14T04:35:37Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
複数面シナリオと複雑なグラフワークフロー構造を備えた統合ワークフロー生成ベンチマークであるWorfBenchを紹介する。
また,サブシーケンスとサブグラフマッチングアルゴリズムを利用したシステム評価プロトコルWorfEvalを提案する。
我々は、生成されたタスクが下流のタスクを強化し、推論中により少ない時間で優れたパフォーマンスを達成することを観察する。
論文 参考訳(メタデータ) (2024-10-10T12:41:19Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - The Compressor-Retriever Architecture for Language Model OS [20.56093501980724]
オペレーティングシステム(OS)のコアコンポーネントとして言語モデルを用いるという概念について検討する。
このようなLM OSを実現する上で重要な課題は、寿命の長いコンテキストを管理し、セッション間のステートフルネスを確保することだ。
本稿では,生涯のコンテキスト管理のために設計されたモデル非依存アーキテクチャであるコンプレッサー・レトリバーを紹介する。
論文 参考訳(メタデータ) (2024-09-02T23:28:15Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。