Review of Deep Learning Applications to Structural Proteomics Enabled by Cryogenic Electron Microscopy and Tomography
- URL: http://arxiv.org/abs/2507.19565v1
- Date: Fri, 25 Jul 2025 16:15:09 GMT
- Title: Review of Deep Learning Applications to Structural Proteomics Enabled by Cryogenic Electron Microscopy and Tomography
- Authors: Brady K. Zhou, Jason J. Hu, Jane K. J. Lee, Z. Hong Zhou, Demetri Terzopoulos,
- Abstract summary: "cryoEM revolution" has produced exponential growth in high-resolution structural data through advances in cryogenic electron microscopy (cryoEM) and tomography (cryoET)<n>Deep learning integration into structural resolution addresses longstanding challenges including low signal-to-noise ratios, preferred orientation artifacts, and missing-wedge problems.<n>This review examines AI applications across the entire cryoEM pipeline, from automated particle picking using convolutional neural networks to computational solutions for preferred orientation bias.
- Score: 9.273554898053678
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The past decade's "cryoEM revolution" has produced exponential growth in high-resolution structural data through advances in cryogenic electron microscopy (cryoEM) and tomography (cryoET). Deep learning integration into structural proteomics workflows addresses longstanding challenges including low signal-to-noise ratios, preferred orientation artifacts, and missing-wedge problems that historically limited efficiency and scalability. This review examines AI applications across the entire cryoEM pipeline, from automated particle picking using convolutional neural networks (Topaz, crYOLO, CryoSegNet) to computational solutions for preferred orientation bias (spIsoNet, cryoPROS) and advanced denoising algorithms (Topaz-Denoise). In cryoET, tools like IsoNet employ U-Net architectures for simultaneous missing-wedge correction and noise reduction, while TomoNet streamlines subtomogram averaging through AI-driven particle detection. The workflow culminates with automated atomic model building using sophisticated tools like ModelAngelo, DeepTracer, and CryoREAD that translate density maps into interpretable biological structures. These AI-enhanced approaches have achieved near-atomic resolution reconstructions with minimal manual intervention, resolved previously intractable datasets suffering from severe orientation bias, and enabled successful application to diverse biological systems from HIV virus-like particles to in situ ribosomal complexes. As deep learning evolves, particularly with large language models and vision transformers, the future promises sophisticated automation and accessibility in structural biology, potentially revolutionizing our understanding of macromolecular architecture and function.
Related papers
- STEM Diffraction Pattern Analysis with Deep Learning Networks [0.0]
This work presents a machine learning-based approach for predicting Euler angles directly from scanning transmission electron microscopy (STEM) diffraction patterns (DPs)<n>It enables the automated generation of high-resolution crystal orientation maps, facilitating the analysis of internal microstructures at the nanoscale.<n>Three deep learning architectures--convolutional neural networks (CNNs), Dense Convolutional Networks (DenseNets), and Shifted Windows (Swin) Transformers--are evaluated, using an experimentally acquired dataset labelled via a commercial TM algorithm.
arXiv Detail & Related papers (2025-07-02T16:58:09Z) - F-ANcGAN: An Attention-Enhanced Cycle Consistent Generative Adversarial Architecture for Synthetic Image Generation of Nanoparticles [3.124884279860061]
We introduce F-ANcGAN, an attention-enhanced cycle consistent generative adversarial system that can be trained using a limited number of data samples.<n>Our model uses a Style U-Net generator and a U-Net segmentation network equipped with self-attention to capture structural relationships.
arXiv Detail & Related papers (2025-05-23T17:02:22Z) - L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection [44.016805074560295]
Chronic Low Back Pain (CLBP) afflicts millions globally, significantly impacting individuals' well-being and imposing economic burdens on healthcare systems.
While artificial intelligence (AI) and deep learning offer promising avenues for analyzing pain-related behaviors to improve rehabilitation strategies, current models, including convolutional neural networks (CNNs), have limitations.
We introduce hbox EmoL-SFAN, a lightweight CNN architecture incorporating 2D filters designed to capture the spatial-temporal interplay of data from motion capture and surface electromyography sensors.
arXiv Detail & Related papers (2024-06-07T12:01:37Z) - Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
We introduce deep unrolled self-supervised learning, which alleviates the need for such data by training a sequence-specific, model-based autoencoder.
Our proposed method exceeds the performance of its supervised counterparts.
arXiv Detail & Related papers (2024-03-25T17:40:32Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - Leveraging generative adversarial networks to create realistic scanning
transmission electron microscopy images [2.5954872177280346]
Machine learning could revolutionize materials research through autonomous data collection and processing.
We employ a cycle generative adversarial network (CycleGAN) with a reciprocal space discriminator to augment simulated data with realistic spatial frequency information.
We showcase our approach by training a fully convolutional network (FCN) to identify single atom defects in a 4.5 million atom data set.
arXiv Detail & Related papers (2023-01-18T19:19:27Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - DLDNN: Deterministic Lateral Displacement Design Automation by Neural
Networks [1.8365768330479992]
This paper investigates a fast versatile design automation platform to address Deterministic lateral displacement (DLD) problems.
convolutional and artificial neural networks were employed to learn velocity fields and critical diameters of a range of DLD configurations.
The developed tool was tested for 12 critical conditions and performed reliably with errors of less than 4%.
arXiv Detail & Related papers (2022-08-30T14:38:17Z) - Cell nuclei classification in histopathological images using hybrid
OLConvNet [13.858624044986815]
We have proposed a hybrid and flexible deep learning architecture OLConvNet.
$CNN_3L$ reduces the training time by training fewer parameters.
We observed that our proposed model works well and perform better than contemporary complex algorithms.
arXiv Detail & Related papers (2022-02-21T12:39:37Z) - Learning to automate cryo-electron microscopy data collection with
Ptolemy [4.6453787256723365]
cryogenic electron microscopy (cryo-EM) has emerged as a primary method for determining near-native, near-atomic resolution 3D structures of biological macromolecules.
Currently, the process of collecting high-magnification cryo-EM micrographs requires human input and manual tuning of parameters.
Here, we develop the first pipeline to automate low- and medium-magnification targeting with purpose-built algorithms.
arXiv Detail & Related papers (2021-12-01T22:39:28Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.