Federated Calculation of the Free-Support Transportation Barycenter by Single-Loop Dual Decomposition
- URL: http://arxiv.org/abs/2507.19627v1
- Date: Fri, 25 Jul 2025 18:54:25 GMT
- Title: Federated Calculation of the Free-Support Transportation Barycenter by Single-Loop Dual Decomposition
- Authors: Zhengqi Lin, Andrzej RuszczyĆski,
- Abstract summary: We propose an efficient federated dual decomposition algorithm for calculating the Wasserstein barycenter of several distributions.<n>The algorithm does not access local data and uses only highly aggregated information.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an efficient federated dual decomposition algorithm for calculating the Wasserstein barycenter of several distributions, including choosing the support of the solution. The algorithm does not access local data and uses only highly aggregated information. It also does not require repeated solutions to mass transportation problems. Because of the absence of any matrix-vector operations, the algorithm exhibits a very low complexity of each iteration and significant scalability. We illustrate its virtues and compare it to the state-of-the-art methods on several examples of mixture models.
Related papers
- Exact and Heuristic Algorithms for Constrained Biclustering [0.0]
Biclustering, also known as co-clustering or two-way clustering, simultaneously partitions the rows and columns of a data matrix to reveal submatrices with coherent patterns.<n>We study constrained biclustering with pairwise constraints, namely must-link and cannot-link constraints, which specify whether objects should belong to the same or different biclusters.
arXiv Detail & Related papers (2025-08-07T15:29:22Z) - Highly Efficient Rotation-Invariant Spectral Embedding for Scalable Incomplete Multi-View Clustering [41.37759812894945]
We propose a highly efficient rotation-invariant spectral embedding (RISE) method for scalable incomplete multi-view clustering.<n>RISE learns view-specific embeddings from incomplete bipartite graphs to capture the complementary information.<n>We design a fast alternating optimization algorithm with linear complexity and promising convergence to solve the proposed formulation.
arXiv Detail & Related papers (2025-01-21T05:20:02Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - A Comparative Analysis of Distributed Linear Solvers under Data Heterogeneity [9.248526557884498]
We consider the problem of solving a large-scale system of linear equations in a distributed or federated manner by a taskmaster and a set of machines.<n>We compare two well-known classes of algorithms used to solve this problem: projection-based methods and optimization-based methods.
arXiv Detail & Related papers (2023-04-20T20:48:00Z) - Forster Decomposition and Learning Halfspaces with Noise [60.691817861402676]
A Forster transform is an operation that turns a distribution into one with good anti-concentration properties.
We show that any distribution can be decomposed efficiently as a disjoint mixture of few distributions for which a Forster transform exists and can be computed efficiently.
arXiv Detail & Related papers (2021-07-12T17:00:59Z) - Analysis of Truncated Orthogonal Iteration for Sparse Eigenvector
Problems [78.95866278697777]
We propose two variants of the Truncated Orthogonal Iteration to compute multiple leading eigenvectors with sparsity constraints simultaneously.
We then apply our algorithms to solve the sparse principle component analysis problem for a wide range of test datasets.
arXiv Detail & Related papers (2021-03-24T23:11:32Z) - Projection Robust Wasserstein Barycenter [36.97843660480747]
approximating the Wasserstein barycenter is numerically challenging because of the curse of dimensionality.
This paper proposes the projection robust Wasserstein barycenter (PRWB) that mitigates the curse of dimensionality.
arXiv Detail & Related papers (2021-02-05T19:23:35Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Communication-efficient distributed eigenspace estimation [31.69089186688224]
We develop a communication-efficient distributed algorithm for computing the leading invariant subspace of a data matrix.
Our algorithm uses a novel alignment scheme that minimizes the Procrustean distance between local solutions and a reference solution.
We show that our algorithm achieves a similar error rate to that of a centralized estimator.
arXiv Detail & Related papers (2020-09-05T02:11:22Z) - Continuous Regularized Wasserstein Barycenters [51.620781112674024]
We introduce a new dual formulation for the regularized Wasserstein barycenter problem.
We establish strong duality and use the corresponding primal-dual relationship to parametrize the barycenter implicitly using the dual potentials of regularized transport problems.
arXiv Detail & Related papers (2020-08-28T08:28:06Z) - Solution Path Algorithm for Twin Multi-class Support Vector Machine [6.97711662470035]
The paper is devoted to the fast regularization parameter tuning algorithm for the twin multi-class support vector machine.
A new sample dataset division method is adopted and the Lagrangian multipliers are proved to be piecewise linear.
The proposed method can achieve good classification performance with reducing the computational cost of grid search method from exponential level to the constant level.
arXiv Detail & Related papers (2020-05-30T14:05:46Z) - Joint Wasserstein Distribution Matching [89.86721884036021]
Joint distribution matching (JDM) problem, which aims to learn bidirectional mappings to match joint distributions of two domains, occurs in many machine learning and computer vision applications.
We propose to address JDM problem by minimizing the Wasserstein distance of the joint distributions in two domains.
We then propose an important theorem to reduce the intractable problem into a simple optimization problem, and develop a novel method to solve it.
arXiv Detail & Related papers (2020-03-01T03:39:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.