"X of Information'' Continuum: A Survey on AI-Driven Multi-dimensional Metrics for Next-Generation Networked Systems
- URL: http://arxiv.org/abs/2507.19657v1
- Date: Fri, 25 Jul 2025 20:03:38 GMT
- Title: "X of Information'' Continuum: A Survey on AI-Driven Multi-dimensional Metrics for Next-Generation Networked Systems
- Authors: Beining Wu, Jun Huang, Shui Yu,
- Abstract summary: We introduce a systematic four-dimensional taxonomic framework that structures information metrics along temporal, quality/utility, reliability/robustness, and network/communication dimensions.<n>Our analysis reveals that artificial intelligence technologies, such as deep reinforcement learning, multi-agent systems, and neural optimization models, enable adaptive, context-aware optimization of competing information quality objectives.
- Score: 13.897670100495274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of next-generation networking systems has inherently shifted from throughput-based paradigms towards intelligent, information-aware designs that emphasize the quality, relevance, and utility of transmitted information, rather than sheer data volume. While classical network metrics, such as latency and packet loss, remain significant, they are insufficient to quantify the nuanced information quality requirements of modern intelligent applications, including autonomous vehicles, digital twins, and metaverse environments. In this survey, we present the first comprehensive study of the ``X of Information'' continuum by introducing a systematic four-dimensional taxonomic framework that structures information metrics along temporal, quality/utility, reliability/robustness, and network/communication dimensions. We uncover the increasing interdependencies among these dimensions, whereby temporal freshness triggers quality evaluation, which in turn helps with reliability appraisal, ultimately enabling effective network delivery. Our analysis reveals that artificial intelligence technologies, such as deep reinforcement learning, multi-agent systems, and neural optimization models, enable adaptive, context-aware optimization of competing information quality objectives. In our extensive study of six critical application domains, covering autonomous transportation, industrial IoT, healthcare digital twins, UAV communications, LLM ecosystems, and metaverse settings, we illustrate the revolutionary promise of multi-dimensional information metrics for meeting diverse operational needs. Our survey identifies prominent implementation challenges, including ...
Related papers
- Diffusion Models for Future Networks and Communications: A Comprehensive Survey [65.97057929688499]
The rise of Generative AI (GenAI) in recent years has catalyzed transformative advances in wireless communications and networks.<n>Among the members of the GenAI family, Diffusion Models (DMs) have risen to prominence as a powerful option.<n>We aim to provide a comprehensive overview of the theoretical foundations and practical applications of DMs across future communication systems.
arXiv Detail & Related papers (2025-08-03T04:59:58Z) - AI Flow: Perspectives, Scenarios, and Approaches [51.38621621775711]
We introduce AI Flow, a framework that integrates cutting-edge IT and CT advancements.<n>First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters.<n>Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features.<n>Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow.
arXiv Detail & Related papers (2025-06-14T12:43:07Z) - From Large AI Models to Agentic AI: A Tutorial on Future Intelligent Communications [57.38526350775472]
This tutorial provides a systematic introduction to the principles, design, and applications of Large Artificial Intelligence Models (LAMs) and Agentic AI technologies.<n>We outline the background of 6G communications, review the technological evolution from LAMs to Agentic AI, and clarify the tutorial's motivation and main contributions.
arXiv Detail & Related papers (2025-05-28T12:54:07Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - Information Retrieval in the Age of Generative AI: The RGB Model [77.96475639967431]
This paper presents a novel quantitative approach to shed light on the complex information dynamics arising from the growing use of generative AI tools.<n>We propose a model to characterize the generation, indexing, and dissemination of information in response to new topics.<n>Our findings suggest that the rapid pace of generative AI adoption, combined with increasing user reliance, can outpace human verification, escalating the risk of inaccurate information proliferation.
arXiv Detail & Related papers (2025-04-29T10:21:40Z) - Small Object Detection: A Comprehensive Survey on Challenges, Techniques and Real-World Applications [0.15705429611931052]
Small object detection (SOD) is a critical yet challenging task in computer vision.<n>Recent advancements in deep learning have introduced innovative solutions.<n>Emerging trends such as lightweight neural networks, knowledge distillation (KD), and self-supervised learning offer promising directions for improving detection efficiency.
arXiv Detail & Related papers (2025-03-26T12:58:13Z) - Toward Agentic AI: Generative Information Retrieval Inspired Intelligent Communications and Networking [87.82985288731489]
Agentic AI has emerged as a key paradigm for intelligent communications and networking.<n>This article emphasizes the role of knowledge acquisition, processing, and retrieval in agentic AI for telecom systems.
arXiv Detail & Related papers (2025-02-24T06:02:25Z) - A Theoretical Framework for AI-driven data quality monitoring in high-volume data environments [1.2753215270475886]
This paper presents a theoretical framework for an AI-driven data quality monitoring system designed to address the challenges of maintaining data quality in high-volume environments.
We examine the limitations of traditional methods in managing the scale, velocity, and variety of big data and propose a conceptual approach leveraging advanced machine learning techniques.
Key components include an intelligent data ingestion layer, adaptive preprocessing mechanisms, context-aware feature extraction, and AI-based quality assessment modules.
arXiv Detail & Related papers (2024-10-11T07:06:36Z) - Machine Learning Empowered Intelligent Data Center Networking: A Survey [35.55535885962517]
This paper comprehensively investigates the application of machine learning to data center networking.
It covers flow prediction, flow classification, load balancing, resource management, routing optimization, and congestion control.
We design a quality assessment criteria called REBEL-3S to impartially measure the strengths and weaknesses of these research works.
arXiv Detail & Related papers (2022-02-28T05:27:22Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.