A Theoretical Framework for AI-driven data quality monitoring in high-volume data environments
- URL: http://arxiv.org/abs/2410.08576v1
- Date: Fri, 11 Oct 2024 07:06:36 GMT
- Title: A Theoretical Framework for AI-driven data quality monitoring in high-volume data environments
- Authors: Nikhil Bangad, Vivekananda Jayaram, Manjunatha Sughaturu Krishnappa, Amey Ram Banarse, Darshan Mohan Bidkar, Akshay Nagpal, Vidyasagar Parlapalli,
- Abstract summary: This paper presents a theoretical framework for an AI-driven data quality monitoring system designed to address the challenges of maintaining data quality in high-volume environments.
We examine the limitations of traditional methods in managing the scale, velocity, and variety of big data and propose a conceptual approach leveraging advanced machine learning techniques.
Key components include an intelligent data ingestion layer, adaptive preprocessing mechanisms, context-aware feature extraction, and AI-based quality assessment modules.
- Score: 1.2753215270475886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a theoretical framework for an AI-driven data quality monitoring system designed to address the challenges of maintaining data quality in high-volume environments. We examine the limitations of traditional methods in managing the scale, velocity, and variety of big data and propose a conceptual approach leveraging advanced machine learning techniques. Our framework outlines a system architecture that incorporates anomaly detection, classification, and predictive analytics for real-time, scalable data quality management. Key components include an intelligent data ingestion layer, adaptive preprocessing mechanisms, context-aware feature extraction, and AI-based quality assessment modules. A continuous learning paradigm is central to our framework, ensuring adaptability to evolving data patterns and quality requirements. We also address implications for scalability, privacy, and integration within existing data ecosystems. While practical results are not provided, it lays a robust theoretical foundation for future research and implementations, advancing data quality management and encouraging the exploration of AI-driven solutions in dynamic environments.
Related papers
- Enhancing Machine Learning Performance through Intelligent Data Quality Assessment: An Unsupervised Data-centric Framework [0.0]
Poor data quality limits the advantageous power of Machine Learning (ML)
We propose an intelligent data-centric evaluation framework that can identify high-quality data and improve the performance of an ML system.
arXiv Detail & Related papers (2025-02-18T18:01:36Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.
The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.
Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis [55.390060529534644]
We propose OS-Genesis, a novel data synthesis pipeline for Graphical User Interface (GUI) agents.
Instead of relying on pre-defined tasks, OS-Genesis enables agents first to perceive environments and perform step-wise interactions.
A trajectory reward model is then employed to ensure the quality of the generated trajectories.
arXiv Detail & Related papers (2024-12-27T16:21:58Z) - Deep Learning, Machine Learning, Advancing Big Data Analytics and Management [26.911181864764117]
Advances in artificial intelligence, machine learning, and deep learning have catalyzed the transformation of big data analytics and management.
This work explores the theoretical foundations, methodological advancements, and practical implementations of these technologies.
It equips researchers, practitioners, and data enthusiasts with the tools to navigate the complexities of modern data analytics.
arXiv Detail & Related papers (2024-12-03T05:59:34Z) - Adaptive Data Quality Scoring Operations Framework using Drift-Aware Mechanism for Industrial Applications [0.0]
We introduce a novel framework to address the challenges posed by dynamic quality dimensions in industrial data streams.
The framework integrates a dynamic change detector mechanism that actively monitors and adapts to changes in data quality.
The experimental results reveal high predictive performance and efficient processing time, highlighting its effectiveness in practical quality-driven AI applications.
arXiv Detail & Related papers (2024-08-13T08:32:06Z) - AI-Driven Frameworks for Enhancing Data Quality in Big Data Ecosystems: Error_Detection, Correction, and Metadata Integration [0.0]
This thesis proposes a novel set of interconnected frameworks aimed at enhancing big data quality comprehensively.
Firstly, we introduce new quality metrics and a weighted scoring system for precise data quality assessment.
Thirdly, we present a generic framework for detecting various quality anomalies using AI models.
arXiv Detail & Related papers (2024-05-06T21:36:45Z) - AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review [0.29998889086656577]
This study proposes an AIOps terminology and taxonomy, establishing a structured incident management procedure and providing guidelines for constructing an AIOps framework.
The goal is to provide a comprehensive review of technical and research aspects in AIOps for incident management, aiming to structure knowledge, identify gaps, and establish a foundation for future developments in the field.
arXiv Detail & Related papers (2024-04-01T17:32:22Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.