論文の概要: Oranits: Mission Assignment and Task Offloading in Open RAN-based ITS using Metaheuristic and Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2507.19712v2
- Date: Thu, 14 Aug 2025 14:59:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-15 13:42:23.444514
- Title: Oranits: Mission Assignment and Task Offloading in Open RAN-based ITS using Metaheuristic and Deep Reinforcement Learning
- Title(参考訳): 目的:メタヒューリスティック・ディープ強化学習を用いたオープンRANベースのITSにおけるミッション割り当てとタスクオフロード
- Authors: Ngoc Hung Nguyen, Nguyen Van Thieu, Quang-Trung Luu, Anh Tuan Nguyen, Senura Wanasekara, Nguyen Cong Luong, Fatemeh Kavehmadavani, Van-Dinh Nguyen,
- Abstract要約: オープンLAN(Open RAN)ベースのインテリジェントトランスポートシステム(ITS)におけるミッション割り当てとタスクオフロードについて検討する。
既存の研究はしばしば、ミッション間の複雑な相互依存と、エッジサーバへのタスクのオフロードに伴うコストを見落としている。
我々は、オーラニッツ(Oranits)という、ミッション依存とオフロードコストを明示的に考慮し、車両の協調によって性能を最適化する新しいシステムモデルを紹介した。
- 参考スコア(独自算出の注目度): 10.571108374756184
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we explore mission assignment and task offloading in an Open Radio Access Network (Open RAN)-based intelligent transportation system (ITS), where autonomous vehicles leverage mobile edge computing for efficient processing. Existing studies often overlook the intricate interdependencies between missions and the costs associated with offloading tasks to edge servers, leading to suboptimal decision-making. To bridge this gap, we introduce Oranits, a novel system model that explicitly accounts for mission dependencies and offloading costs while optimizing performance through vehicle cooperation. To achieve this, we propose a twofold optimization approach. First, we develop a metaheuristic-based evolutionary computing algorithm, namely the Chaotic Gaussian-based Global ARO (CGG-ARO), serving as a baseline for one-slot optimization. Second, we design an enhanced reward-based deep reinforcement learning (DRL) framework, referred to as the Multi-agent Double Deep Q-Network (MA-DDQN), that integrates both multi-agent coordination and multi-action selection mechanisms, significantly reducing mission assignment time and improving adaptability over baseline methods. Extensive simulations reveal that CGG-ARO improves the number of completed missions and overall benefit by approximately 7.1% and 7.7%, respectively. Meanwhile, MA-DDQN achieves even greater improvements of 11.0% in terms of mission completions and 12.5% in terms of the overall benefit. These results highlight the effectiveness of Oranits in enabling faster, more adaptive, and more efficient task processing in dynamic ITS environments.
- Abstract(参考訳): 本稿では,オープンラジオアクセスネットワーク(Open RAN)をベースとしたインテリジェントトランスポートシステム(ITS)におけるミッション割り当てとタスクオフロードについて検討する。
既存の研究は、ミッション間の複雑な相互依存と、エッジサーバへのタスクのオフロードに伴うコストを見落としていることが多い。
このギャップを埋めるために、オーラニッツ(Oranits)という、ミッション依存とオフロードコストを明示的に考慮し、車両の協調によるパフォーマンスの最適化を行う新しいシステムモデルを紹介します。
そこで本研究では,二つの最適化手法を提案する。
まず,メタヒューリスティックに基づく進化計算アルゴリズム,すなわちカオスガウスに基づくGlobal ARO(CGG-ARO)を開発し,ワンスロット最適化のベースラインとして機能する。
第2に,マルチエージェント協調とマルチアクション選択機構を統合し,ミッション割り当て時間を大幅に短縮し,ベースライン法に対する適応性を向上する多エージェントDouble Deep Q-Network (MA-DDQN) と呼ばれる拡張型報酬ベースディープ強化学習(DRL)フレームワークを設計する。
大規模なシミュレーションにより、CGG-AROはミッションの完了数と全体的な利益をそれぞれ約7.1%と7.7%改善することが明らかになった。
一方、MA-DDQNはミッション完了率で11.0%、全体的な利益で12.5%の大幅な改善を実現している。
これらの結果は、動的ITS環境において、より速く、より適応的で、より効率的なタスク処理を可能にする上で、Oranitsの有効性を強調している。
関連論文リスト
- Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI生成コンテンツは、ネットワークエッジで協調的なMobile AIGC Service Providers(MASP)を編成して、リソース制約のあるユーザにユビキタスでカスタマイズされたコンテンツを提供することができる。
このようなパラダイムは2つの大きな課題に直面している: 1) 生のプロンプトは、ユーザーが特定のAIGCモデルで経験していないために、しばしば生成品質が低下する。
本研究では,Large Language Model (LLM) を利用してカスタマイズしたプロンプトコーパスを生成する対話型プロンプトエンジニアリング機構を開発し,政策模倣に逆強化学習(IRL)を用いる。
論文 参考訳(メタデータ) (2025-02-17T03:05:20Z) - MAGNNET: Multi-Agent Graph Neural Network-based Efficient Task Allocation for Autonomous Vehicles with Deep Reinforcement Learning [2.5022287664959446]
本稿では,グラフニューラルネットワーク(GNN)を一元的トレーニングと分散実行(CTDE)パラダイムに統合する新しいフレームワークを提案する。
本手法により,無人航空機 (UAV) と無人地上車両 (UGV) は, 中央調整を必要とせず, 効率よくタスクを割り当てることができる。
論文 参考訳(メタデータ) (2025-02-04T13:29:56Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
低高度経済は、コミュニケーションやセンシングなどの分野で発展する大きな可能性を秘めている。
本稿では,SAGINにおけるマルチUAV協調タスクスケジューリング問題に対処するため,クラスタリングに基づく多エージェントDeep Deterministic Policy Gradient (CMADDPG)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-14T06:17:33Z) - Multi-agent Path Finding for Timed Tasks using Evolutionary Games [1.3023548510259344]
我々のアルゴリズムは,少なくとも1桁の精度で深部RL法よりも高速であることを示す。
以上の結果から,他の方法と比較してエージェント数の増加にともなってスケールが向上することが示唆された。
論文 参考訳(メタデータ) (2024-11-15T20:10:25Z) - Enhancing Spectrum Efficiency in 6G Satellite Networks: A GAIL-Powered Policy Learning via Asynchronous Federated Inverse Reinforcement Learning [67.95280175998792]
ビームフォーミング,スペクトルアロケーション,リモートユーザ機器(RUE)アソシエイトを最適化するために,GAILを利用した新しいポリシー学習手法を提案する。
手動チューニングなしで報酬関数を自動的に学習するために、逆RL(IRL)を用いる。
提案手法は従来のRL手法よりも優れており,コンバージェンスと報酬値の14.6%の改善が達成されている。
論文 参考訳(メタデータ) (2024-09-27T13:05:02Z) - Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer
Optimization Framework [47.57576667752444]
オープンRAN(O-RAN)におけるインテリジェントステアリングアプリケーションを実現するために,フロースプリット分布,渋滞制御,スケジューリング(JFCS)を共同で最適化する。
i) 適切な無線ユニットへのトラフィックを効率よく、適応的に誘導する新しいJFCSフレームワークを提案し、i) 強化学習、内近似、二項探索に基づく低複雑さアルゴリズムを開発し、異なる時間スケールでJFCS問題を効果的に解決し、iv) 厳密な理論的性能結果を分析し、遅延とユーティリティ最適化のトレードオフを改善するためのスケーリング係数が存在することを示す。
論文 参考訳(メタデータ) (2023-02-06T11:37:06Z) - DC-MRTA: Decentralized Multi-Robot Task Allocation and Navigation in
Complex Environments [55.204450019073036]
本稿では,倉庫環境における移動ロボットのためのタスク割り当てと分散ナビゲーションアルゴリズムを提案する。
本稿では,共同分散タスク割り当てとナビゲーションの問題について考察し,それを解決するための2段階のアプローチを提案する。
ロボットの衝突のない軌道の計算では,タスク完了時間において最大14%の改善と最大40%の改善が観察される。
論文 参考訳(メタデータ) (2022-09-07T00:35:27Z) - Multi-Agent Reinforcement Learning for Long-Term Network Resource
Allocation through Auction: a V2X Application [7.326507804995567]
我々は,自律エージェント間の分散意思決定として,移動エージェントの動的グループ(自動車など)からの計算タスクのオフロードを定式化する。
我々は、競争と協力のバランスをとることで、そのようなエージェントにプライベートとシステム目標の整合を動機付けるインタラクションメカニズムを設計する。
本稿では,部分的,遅延,ノイズの多い状態情報を用いて学習する,新しいマルチエージェントオンライン学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-29T10:29:06Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
インテリジェント・リフレクション・サーフェス(IRS)は将来の無線ネットワークに広く応用されることが想定されている。
本稿では,エネルギー収穫能力を備えた協調型IRSデバイスを用いたマルチユーザ通信システムについて検討する。
論文 参考訳(メタデータ) (2022-03-26T20:37:14Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
強化学習 (Reinforcement Learning, RL) は, 意思決定および最適制御プロセスのための有望な解法として広く研究されている。
本稿では,Adaptive ADMM (asI-ADMM)アルゴリズムを提案する。
実験の結果,提案アルゴリズムは通信コストやスケーラビリティの観点から技術状況よりも優れており,複雑なIoT環境に適応できることがわかった。
論文 参考訳(メタデータ) (2021-06-30T16:49:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。