HypKG: Hypergraph-based Knowledge Graph Contextualization for Precision Healthcare
- URL: http://arxiv.org/abs/2507.19726v2
- Date: Wed, 30 Jul 2025 02:32:04 GMT
- Title: HypKG: Hypergraph-based Knowledge Graph Contextualization for Precision Healthcare
- Authors: Yuzhang Xie, Xu Han, Ran Xu, Xiao Hu, Jiaying Lu, Carl Yang,
- Abstract summary: We propose HypKG, a framework that integrates patient information from EHRs into KGs to generate contextualized knowledge representations for accurate predictions.<n>In experiments using a large biomedical KG and two real-world EHR datasets, HypKG demonstrates significant improvements in healthcare prediction tasks.
- Score: 37.72410429171233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graphs (KGs) are important products of the semantic web, which are widely used in various application domains. Healthcare is one of such domains where KGs are intensively used, due to the high requirement for knowledge accuracy and interconnected nature of healthcare data. However, KGs storing general factual information often lack the ability to account for important contexts of the knowledge such as the status of specific patients, which are crucial in precision healthcare. Meanwhile, electronic health records (EHRs) provide rich personal data, including various diagnoses and medications, which provide natural contexts for general KGs. In this paper, we propose HypKG, a framework that integrates patient information from EHRs into KGs to generate contextualized knowledge representations for accurate healthcare predictions. Using advanced entity-linking techniques, we connect relevant knowledge from general KGs with patient information from EHRs, and then utilize a hypergraph model to "contextualize" the knowledge with the patient information. Finally, we employ hypergraph transformers guided by downstream prediction tasks to jointly learn proper contextualized representations for both KGs and patients, fully leveraging existing knowledge in KGs and patient contexts in EHRs. In experiments using a large biomedical KG and two real-world EHR datasets, HypKG demonstrates significant improvements in healthcare prediction tasks across multiple evaluation metrics. Additionally, by integrating external contexts, HypKG can learn to adjust the representations of entities and relations in KG, potentially improving the quality and real-world utility of knowledge.
Related papers
- Ontology-grounded Automatic Knowledge Graph Construction by LLM under Wikidata schema [60.42231674887294]
We propose an ontology-grounded approach to Knowledge Graph (KG) construction using Large Language Models (LLMs) on a knowledge base.<n>We ground generation of KG with the authored ontology based on extracted relations to ensure consistency and interpretability.<n>Our work presents a promising direction for scalable KG construction pipeline with minimal human intervention, that yields high quality and human-interpretable KGs.
arXiv Detail & Related papers (2024-12-30T13:36:05Z) - LLaVA Needs More Knowledge: Retrieval Augmented Natural Language Generation with Knowledge Graph for Explaining Thoracic Pathologies [3.2221734920470797]
We propose a Vision-Language framework augmented with a Knowledge Graph (KG)-based datastore to generate Natural Language Explanations (NLEs) for medical images.<n>Our framework employs a KG-based retrieval mechanism that not only improves the precision of the generated explanations but also preserves data privacy by avoiding direct data retrieval.<n>These frameworks are validated on the MIMIC-NLE dataset, where they achieve state-of-the-art results.
arXiv Detail & Related papers (2024-10-07T04:59:08Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.<n>Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Context Graph [8.02985792541121]
We present a context graph reasoning textbfCGR$3$ paradigm that leverages large language models (LLMs) to retrieve candidate entities and related contexts.
Our experimental results demonstrate that CGR$3$ significantly improves performance on KG completion (KGC) and KG question answering (KGQA) tasks.
arXiv Detail & Related papers (2024-06-17T02:59:19Z) - A Review on Knowledge Graphs for Healthcare: Resources, Applications, and Promises [59.4999994297993]
This comprehensive review aims to provide an overview of the current state of Healthcare Knowledge Graphs (HKGs)<n>We thoroughly analyzed existing literature on HKGs, covering their construction methodologies, utilization techniques, and applications.<n>The review highlights the potential of HKGs to significantly impact biomedical research and clinical practice.
arXiv Detail & Related papers (2023-06-07T21:51:56Z) - A Biomedical Knowledge Graph for Biomarker Discovery in Cancer [1.7860709946876898]
A domain-specific knowledge graph(KG) is an explicit conceptualization of a specific subject-matter domain.
The KG is constructed by integrating cancer-related knowledge and facts from multiple sources.
We listed down some queries and some examples of QA and deducing knowledge based on the KG.
arXiv Detail & Related papers (2023-02-09T16:17:57Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
We propose a new approach of harvesting massive KGs of arbitrary relations from pretrained LMs.
With minimal input of a relation definition, the approach efficiently searches in the vast entity pair space to extract diverse accurate knowledge.
We deploy the approach to harvest KGs of over 400 new relations from different LMs.
arXiv Detail & Related papers (2022-06-28T19:46:29Z) - Scientific Language Models for Biomedical Knowledge Base Completion: An
Empirical Study [62.376800537374024]
We study scientific LMs for KG completion, exploring whether we can tap into their latent knowledge to enhance biomedical link prediction.
We integrate the LM-based models with KG embedding models, using a router method that learns to assign each input example to either type of model and provides a substantial boost in performance.
arXiv Detail & Related papers (2021-06-17T17:55:33Z) - Demographic Aware Probabilistic Medical Knowledge Graph Embeddings of
Electronic Medical Records [0.5524804393257919]
Medical knowledge graphs (KGs) constructed from Electronic Medical Records (EMR) contain abundant information about patients and medical entities.
DarLING is a demographic-aware medical KG embedding framework that explicitly incorporates demographics in the medical entities space by associating patient demographics with a corresponding hyperplane.
We evaluate DARLING through link prediction for treatments and medicines, on a medical KG constructed from EMR data, and illustrate its superior performance compared to existing KG embedding models.
arXiv Detail & Related papers (2021-03-22T15:45:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.