Sparse-mode Dynamic Mode Decomposition for Disambiguating Local and Global Structures
- URL: http://arxiv.org/abs/2507.19787v1
- Date: Sat, 26 Jul 2025 04:24:40 GMT
- Title: Sparse-mode Dynamic Mode Decomposition for Disambiguating Local and Global Structures
- Authors: Sara M. Ichinaga, Steven L. Brunton, Aleksandr Y. Aravkin, J. Nathan Kutz,
- Abstract summary: We introduce sparse-mode DMD, a new variant of the optimized DMD framework that leverages sparsity-temporal regularization.<n>The algorithm maintains the noise-robust of optimized modes while disambiguating between modes which are local versus global in nature.<n>We demonstrate this by analyzing synthetic and real-world systems, including examples from optical waveguides, quantum mechanics, and surface temperature data.
- Score: 48.407500521383646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The dynamic mode decomposition (DMD) is a data-driven approach that extracts the dominant features from spatiotemporal data. In this work, we introduce sparse-mode DMD, a new variant of the optimized DMD framework that specifically leverages sparsity-promoting regularization in order to approximate DMD modes which have localized spatial structure. The algorithm maintains the noise-robust properties of optimized DMD while disambiguating between modes which are spatially local versus global in nature. In many applications, such modes are associated with discrete and continuous spectra respectively, thus allowing the algorithm to explicitly construct, in an unsupervised manner, the distinct portions of the spectrum. We demonstrate this by analyzing synthetic and real-world systems, including examples from optical waveguides, quantum mechanics, and sea surface temperature data.
Related papers
- Latent Mode Decomposition [0.3683202928838613]
We introduce Variational Latent Mode Decomposition (VLMD), a new algorithm for extracting oscillatory modes from multivariate signals.<n>Its improved performance is driven by a novel underlying model, Latent Mode Decomposition (LMD), which blends sparse coding and mode decomposition.<n> Experiments on synthetic and real-world datasets demonstrate that VLMD outperforms state-of-the-art MMD methods in accuracy, efficiency, and interpretability.
arXiv Detail & Related papers (2025-05-23T12:16:35Z) - FreSca: Scaling in Frequency Space Enhances Diffusion Models [55.75504192166779]
This paper explores frequency-based control within latent diffusion models.<n>We introduce FreSca, a novel framework that decomposes noise difference into low- and high-frequency components.<n>FreSca operates without any model retraining or architectural change, offering model- and task-agnostic control.
arXiv Detail & Related papers (2025-04-02T22:03:11Z) - Parsimonious Dynamic Mode Decomposition: A Robust and Automated Approach for Optimally Sparse Mode Selection in Complex Systems [0.40964539027092917]
This paper introduces the Parsimonious Dynamic Mode Decomposition (parsDMD)<n>ParsDMD is a novel algorithm designed to automatically select an optimally sparse subset of dynamic modes for both temporal and purely temporal data.<n>It is validated on a diverse range of datasets, including standing wave signals, identifying hidden dynamics, fluid dynamics simulations, and atmospheric sea-surface temperature (SST) data.
arXiv Detail & Related papers (2024-10-22T03:00:11Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Rigged Dynamic Mode Decomposition: Data-Driven Generalized Eigenfunction Decompositions for Koopman Operators [0.0]
We introduce the Rigged Dynamic Mode Decomposition (Rigged DMD) algorithm, which computes generalized eigenfunction decompositions of Koopman operators.<n>We provide examples, including systems with a Lebesgue spectrum, integrable Hamiltonian systems, the Lorenz system, and a high-Reynolds number lid-driven flow in a two-dimensional square cavity.
arXiv Detail & Related papers (2024-05-01T18:00:18Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Dynamic Mode Decomposition for data-driven analysis and reduced-order
modelling of ExB plasmas: I. Extraction of spatiotemporally coherent patterns [3.203036813451742]
We evaluate the generalability of the Dynamic Mode Decomposition (DMD) algorithm for data-driven analysis and reduced-order modelling of plasma dynamics.
arXiv Detail & Related papers (2023-08-26T01:37:52Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Discriminant Dynamic Mode Decomposition for Labeled Spatio-Temporal Data
Collections [16.69145658813375]
We propose a new method for extracting coherent patterns from labeled-temporal data collections.
We achieve such pattern extraction by incorporating discriminant analysis into Dynamic mode decomposition.
We illustrate our method using a synthetic dataset and several real-world datasets.
arXiv Detail & Related papers (2021-02-19T15:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.