FM-LC: A Hierarchical Framework for Urban Flood Mapping by Land Cover Identification Models
- URL: http://arxiv.org/abs/2507.19818v1
- Date: Sat, 26 Jul 2025 06:25:53 GMT
- Title: FM-LC: A Hierarchical Framework for Urban Flood Mapping by Land Cover Identification Models
- Authors: Xin Hong, Longchao Da, Hua Wei,
- Abstract summary: arid environments exhibit limited spectral contrast between water and adjacent surfaces.<n>High-resolution, daily PlanetScope imagery provides the temporal and spatial detail needed.<n>We introduce FM-LC, a hierarchical framework for Flood Mapping by Land Cover identification.
- Score: 4.83455930664954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban flooding in arid regions poses severe risks to infrastructure and communities. Accurate, fine-scale mapping of flood extents and recovery trajectories is therefore essential for improving emergency response and resilience planning. However, arid environments often exhibit limited spectral contrast between water and adjacent surfaces, rapid hydrological dynamics, and highly heterogeneous urban land covers, which challenge traditional flood-mapping approaches. High-resolution, daily PlanetScope imagery provides the temporal and spatial detail needed. In this work, we introduce FM-LC, a hierarchical framework for Flood Mapping by Land Cover identification, for this challenging task. Through a three-stage process, it first uses an initial multi-class U-Net to segment imagery into water, vegetation, built area, and bare ground classes. We identify that this method has confusion between spectrally similar categories (e.g., water vs. vegetation). Second, by early checking, the class with the major misclassified area is flagged, and a lightweight binary expert segmentation model is trained to distinguish the flagged class from the rest. Third, a Bayesian smoothing step refines boundaries and removes spurious noise by leveraging nearby pixel information. We validate the framework on the April 2024 Dubai storm event, using pre- and post-rainfall PlanetScope composites. Experimental results demonstrate average F1-score improvements of up to 29% across all land-cover classes and notably sharper flood delineations, significantly outperforming conventional single-stage U-Net baselines.
Related papers
- Flood-DamageSense: Multimodal Mamba with Multitask Learning for Building Flood Damage Assessment using SAR Remote Sensing Imagery [1.3566464121222228]
Flood-DamageSense is the first deep-learning framework purpose-built for building-level flood-damage assessment.<n>The architecture fuses pre- and post-event SAR/InSAR scenes with very-high-resolution optical basemaps.<n>An end-to-end post-processing pipeline converts pixel-level outputs to actionable, building-scale damage maps.
arXiv Detail & Related papers (2025-06-07T05:19:10Z) - Bayesian Modeling of Zero-Shot Classifications for Urban Flood Detection [9.264147242217364]
Street scene datasets offer a promising means of detecting urban objects and incidents like street flooding.<n>A major challenge in using these datasets is their lack of reliable labels.<n>Here, we propose BayFlood, a two-stage approach which circumvents this difficulty.
arXiv Detail & Related papers (2025-03-18T21:53:37Z) - UniUIR: Considering Underwater Image Restoration as An All-in-One Learner [49.35128836844725]
We propose a Universal Underwater Image Restoration method, termed as UniUIR.<n>To decouple degradation-specific issues and explore the inter-correlations among various degradations in UIR task, we designed the Mamba Mixture-of-Experts module.<n>This module extracts degradation prior information in both spatial and frequency domains, and adaptively selects the most appropriate task-specific prompts.
arXiv Detail & Related papers (2025-01-22T16:10:42Z) - Generalizable Disaster Damage Assessment via Change Detection with Vision Foundation Model [17.016411785224317]
We introduce DAVI (Disaster Assessment with VIsion foundation model), a novel approach that addresses domain disparities and detects structural damage at the building level without requiring ground-truth labels for target regions.<n>DAVI combines task-specific knowledge from a model trained on source regions with task-agnostic knowledge from an image segmentation model to generate pseudo labels indicating potential damage in target regions.<n>It then utilizes a two-stage refinement process, which operate at both pixel and image levels, to accurately identify changes in disaster-affected areas.
arXiv Detail & Related papers (2024-06-12T09:21:28Z) - Aerial Lifting: Neural Urban Semantic and Building Instance Lifting from Aerial Imagery [51.73680703579997]
We present a neural radiance field method for urban-scale semantic and building-level instance segmentation from aerial images.
objects in urban aerial images exhibit substantial variations in size, including buildings, cars, and roads.
We introduce a scale-adaptive semantic label fusion strategy that enhances the segmentation of objects of varying sizes.
We then introduce a novel cross-view instance label grouping strategy to mitigate the multi-view inconsistency problem in the 2D instance labels.
arXiv Detail & Related papers (2024-03-18T14:15:39Z) - Hi-Map: Hierarchical Factorized Radiance Field for High-Fidelity
Monocular Dense Mapping [51.739466714312805]
We introduce Hi-Map, a novel monocular dense mapping approach based on Neural Radiance Field (NeRF)
Hi-Map is exceptional in its capacity to achieve efficient and high-fidelity mapping using only posed RGB inputs.
arXiv Detail & Related papers (2024-01-06T12:32:25Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
We present DeepAqua, a self-supervised deep learning model that eliminates the need for manual annotations during the training phase.
We exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open and vegetated water surfaces.
Experimental results show that DeepAqua outperforms other unsupervised methods by improving accuracy by 7%, Intersection Over Union by 27%, and F1 score by 14%.
arXiv Detail & Related papers (2023-05-02T18:06:21Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
We propose a Prior map Guided CycleGAN (PG-CycleGAN) for defogging of images with overwater scenes.
The proposed method outperforms the state-of-the-art supervised, semi-supervised, and unsupervised defogging approaches.
arXiv Detail & Related papers (2022-12-23T03:00:28Z) - Cross-Geography Generalization of Machine Learning Methods for
Classification of Flooded Regions in Aerial Images [3.9921541182631253]
This work proposes two approaches for identifying flooded regions in UAV aerial images.
The first approach utilizes texture-based unsupervised segmentation to detect flooded areas.
The second uses an artificial neural network on the texture features to classify images as flooded and non-flooded.
arXiv Detail & Related papers (2022-10-04T13:11:44Z) - Generating Physically-Consistent Satellite Imagery for Climate Visualizations [53.61991820941501]
We train a generative adversarial network to create synthetic satellite imagery of future flooding and reforestation events.
A pure deep learning-based model can generate flood visualizations but hallucinates floods at locations that were not susceptible to flooding.
We publish our code and dataset for segmentation guided image-to-image translation in Earth observation.
arXiv Detail & Related papers (2021-04-10T15:00:15Z) - Non-Homogeneous Haze Removal via Artificial Scene Prior and
Bidimensional Graph Reasoning [52.07698484363237]
We propose a Non-Homogeneous Haze Removal Network (NHRN) via artificial scene prior and bidimensional graph reasoning.
Our method achieves superior performance over many state-of-the-art algorithms for both the single image dehazing and hazy image understanding tasks.
arXiv Detail & Related papers (2021-04-05T13:04:44Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
We create a deep learning pipeline that generates visual satellite images of current and future coastal flooding.
By evaluating the imagery relative to physics-based flood maps, we find that our proposed framework outperforms baseline models in both physical-consistency and photorealism.
While this work focused on the visualization of coastal floods, we envision the creation of a global visualization of how climate change will shape our earth.
arXiv Detail & Related papers (2020-10-16T02:15:34Z) - Flood Extent Mapping based on High Resolution Aerial Imagery and DEM: A
Hidden Markov Tree Approach [10.72081512622396]
This paper evaluates the proposed geographical hidden Markov tree model through case studies on high-resolution aerial imagery.
Three scenes are selected in heavily vegetated floodplains near the cities of Grimesland and Kinston in North Carolina during Hurricane Matthew floods in 2016.
Results show that the proposed hidden Markov tree model outperforms several state of the art machine learning algorithms.
arXiv Detail & Related papers (2020-08-25T18:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.