Flood-DamageSense: Multimodal Mamba with Multitask Learning for Building Flood Damage Assessment using SAR Remote Sensing Imagery
- URL: http://arxiv.org/abs/2506.06667v1
- Date: Sat, 07 Jun 2025 05:19:10 GMT
- Title: Flood-DamageSense: Multimodal Mamba with Multitask Learning for Building Flood Damage Assessment using SAR Remote Sensing Imagery
- Authors: Yu-Hsuan Ho, Ali Mostafavi,
- Abstract summary: Flood-DamageSense is the first deep-learning framework purpose-built for building-level flood-damage assessment.<n>The architecture fuses pre- and post-event SAR/InSAR scenes with very-high-resolution optical basemaps.<n>An end-to-end post-processing pipeline converts pixel-level outputs to actionable, building-scale damage maps.
- Score: 1.3566464121222228
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Most post-disaster damage classifiers succeed only when destructive forces leave clear spectral or structural signatures -- conditions rarely present after inundation. Consequently, existing models perform poorly at identifying flood-related building damages. The model presented in this study, Flood-DamageSense, addresses this gap as the first deep-learning framework purpose-built for building-level flood-damage assessment. The architecture fuses pre- and post-event SAR/InSAR scenes with very-high-resolution optical basemaps and an inherent flood-risk layer that encodes long-term exposure probabilities, guiding the network toward plausibly affected structures even when compositional change is minimal. A multimodal Mamba backbone with a semi-Siamese encoder and task-specific decoders jointly predicts (1) graded building-damage states, (2) floodwater extent, and (3) building footprints. Training and evaluation on Hurricane Harvey (2017) imagery from Harris County, Texas -- supported by insurance-derived property-damage extents -- show a mean F1 improvement of up to 19 percentage points over state-of-the-art baselines, with the largest gains in the frequently misclassified "minor" and "moderate" damage categories. Ablation studies identify the inherent-risk feature as the single most significant contributor to this performance boost. An end-to-end post-processing pipeline converts pixel-level outputs to actionable, building-scale damage maps within minutes of image acquisition. By combining risk-aware modeling with SAR's all-weather capability, Flood-DamageSense delivers faster, finer-grained, and more reliable flood-damage intelligence to support post-disaster decision-making and resource allocation.
Related papers
- Multiclass Post-Earthquake Building Assessment Integrating Optical and SAR Satellite Imagery, Ground Motion, and Soil Data with Transformers [0.0]
We introduce a framework that combines high-resolution post-earthquake satellite imagery with building-specific metadata relevant to the seismic performance of the structure.<n>Our model achieves state-of-the-art performance in multiclass post-earthquake damage identification for buildings from the Turkey-Syria earthquake on February 6, 2023.
arXiv Detail & Related papers (2024-12-05T23:19:51Z) - DeepDamageNet: A two-step deep-learning model for multi-disaster building damage segmentation and classification using satellite imagery [12.869300064524122]
We present a solution that performs the two most important tasks in building damage assessment, segmentation and classification, through deep-learning models.
Our best model couples a building identification semantic segmentation convolutional neural network (CNN) to a building damage classification CNN, with a combined F1 score of 0.66.
We find that though our model was able to identify buildings with relatively high accuracy, building damage classification across various disaster types is a difficult task.
arXiv Detail & Related papers (2024-05-08T04:21:03Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Causality-informed Rapid Post-hurricane Building Damage Detection in
Large Scale from InSAR Imagery [6.331801334141028]
Timely and accurate assessment of hurricane-induced building damage is crucial for effective post-hurricane response and recovery efforts.
Recently, remote sensing technologies provide large-scale optical or Interferometric Synthetic Aperture Radar (InSAR) imagery data immediately after a disastrous event.
These InSAR imageries often contain highly noisy and mixed signals induced by co-occurring or co-located building damage, flood, flood/wind-induced vegetation changes, as well as anthropogenic activities.
This paper introduces an approach for rapid post-hurricane building damage detection from InSAR imagery.
arXiv Detail & Related papers (2023-10-02T18:56:05Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
We propose a Prior map Guided CycleGAN (PG-CycleGAN) for defogging of images with overwater scenes.
The proposed method outperforms the state-of-the-art supervised, semi-supervised, and unsupervised defogging approaches.
arXiv Detail & Related papers (2022-12-23T03:00:28Z) - Attentive Dual Stream Siamese U-net for Flood Detection on
Multi-temporal Sentinel-1 Data [0.0]
We propose a flood detection network using bi-temporal SAR acquisitions.
The proposed segmentation network has an encoder-decoder architecture with two Siamese encoders for pre and post-flood images.
The network outperformed the existing state-of-the-art (uni-temporal) flood detection method by 6% IOU.
arXiv Detail & Related papers (2022-04-20T10:56:39Z) - Superpixel-Based Building Damage Detection from Post-earthquake Imagery Using Deep Neural Networks [6.527607790666018]
Building damage detection after earthquakes is crucial for initiating effective emergency response actions.<n>This paper presents a novel superpixel based approach incorporates Deep Neural Networks (DNN) with a modified segmentation method.<n> Experimental results on a WorldView-2 imagery from Nepal Earthquake of 2015 demonstrate the feasibility and effectiveness of our method.
arXiv Detail & Related papers (2021-12-09T08:05:02Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
We study the problem of efficiently assessing building damage after natural disasters like hurricanes, floods or fires.
The first contribution is a new dataset, consisting of user-generated aerial videos from social media with annotations of instance-level building damage masks.
The second contribution is a new model, namely MSNet, which contains novel region proposal network designs.
arXiv Detail & Related papers (2020-06-30T02:23:05Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.