VAE-GAN Based Price Manipulation in Coordinated Local Energy Markets
- URL: http://arxiv.org/abs/2507.19844v1
- Date: Sat, 26 Jul 2025 07:38:27 GMT
- Title: VAE-GAN Based Price Manipulation in Coordinated Local Energy Markets
- Authors: Biswarup Mukherjee, Li Zhou, S. Gokul Krishnan, Milad Kabirifar, Subhash Lakshminarayana, Charalambos Konstantinou,
- Abstract summary: This paper introduces a model for coordinating prosumers with heterogeneous distributed energy resources (DERs) in a local energy market (LEM)<n>The proposed LEM scheme utilizes a data-driven, model-free reinforcement learning approach based on the multi-agent deep deterministic policy gradient (MADDPG)<n>We investigate a price manipulation strategy using a variational auto encoder-generative adversarial network (VAE-GAN) model, which allows utilities to adjust price signals in a way that induces financial losses for the prosumers.
- Score: 3.498661956610689
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a model for coordinating prosumers with heterogeneous distributed energy resources (DERs), participating in the local energy market (LEM) that interacts with the market-clearing entity. The proposed LEM scheme utilizes a data-driven, model-free reinforcement learning approach based on the multi-agent deep deterministic policy gradient (MADDPG) framework, enabling prosumers to make real-time decisions on whether to buy, sell, or refrain from any action while facilitating efficient coordination for optimal energy trading in a dynamic market. In addition, we investigate a price manipulation strategy using a variational auto encoder-generative adversarial network (VAE-GAN) model, which allows utilities to adjust price signals in a way that induces financial losses for the prosumers. Our results show that under adversarial pricing, heterogeneous prosumer groups, particularly those lacking generation capabilities, incur financial losses. The same outcome holds across LEMs of different sizes. As the market size increases, trading stabilizes and fairness improves through emergent cooperation among agents.
Related papers
- Multi-Agent Reinforcement Learning for Dynamic Pricing in Supply Chains: Benchmarking Strategic Agent Behaviours under Realistically Simulated Market Conditions [4.072683489517408]
This study investigates how Multi-Agent Reinforcement Learning (MARL) can improve dynamic pricing strategies in supply chains.<n>MARL introduces emergent strategic behaviour not captured by static pricing rules and may inform future developments in dynamic pricing.
arXiv Detail & Related papers (2025-07-03T15:07:37Z) - ML-Based Bidding Price Prediction for Pay-As-Bid Ancillary Services Markets: A Use Case in the German Control Reserve Market [45.62331048595689]
This paper presents a methodology for forecasting bidding prices in pay-as-bid ancillary service markets, focusing on the German control reserve market.<n>We evaluate various machine learning models, including Support Vector Regression, Decision Trees, and k-Nearest Neighbors, and compare their performance against benchmark models.<n>Our analysis demonstrates that the proposed approach improves potential revenues by 27.43 % to 37.31 % compared to baseline models.
arXiv Detail & Related papers (2025-03-21T15:21:43Z) - Learn to Bid as a Price-Maker Wind Power Producer [2.249916681499244]
Wind power producers (WPPs) participating in short-term power markets face significant imbalance costs due to their non-dispatchable and variable production.<n>We propose an online learning algorithm that leverages contextual information to optimize WPP bids in the price-maker setting.<n>The algorithm's performance is evaluated against various benchmark strategies using a numerical simulation of the German day-ahead and real-time markets.
arXiv Detail & Related papers (2025-03-20T12:51:37Z) - Vision-Language Navigation with Energy-Based Policy [66.04379819772764]
Vision-language navigation (VLN) requires an agent to execute actions following human instructions.
We propose an Energy-based Navigation Policy (ENP) to model the joint state-action distribution.
ENP achieves promising performances on R2R, REVERIE, RxR, and R2R-CE.
arXiv Detail & Related papers (2024-10-18T08:01:36Z) - Evaluating the Impact of Multiple DER Aggregators on Wholesale Energy Markets: A Hybrid Mean Field Approach [2.0535683313855055]
The integration of distributed energy resources into wholesale energy markets can greatly enhance grid flexibility, improve market efficiency, and contribute to a more sustainable energy future.<n>We study a wholesale market model featuring multiple DER aggregators, each controlling a portfolio of DER resources and bidding into the market on behalf of the DER asset owners.<n>We propose a reinforcement learning (RL)-based method to help each agent learn optimal strategies within the MFG framework, enhancing their ability to adapt to market conditions and uncertainties.
arXiv Detail & Related papers (2024-08-27T14:56:28Z) - An Auction-based Marketplace for Model Trading in Federated Learning [54.79736037670377]
Federated learning (FL) is increasingly recognized for its efficacy in training models using locally distributed data.
We frame FL as a marketplace of models, where clients act as both buyers and sellers.
We propose an auction-based solution to ensure proper pricing based on performance gain.
arXiv Detail & Related papers (2024-02-02T07:25:53Z) - Mimicking Better by Matching the Approximate Action Distribution [48.95048003354255]
We introduce MAAD, a novel, sample-efficient on-policy algorithm for Imitation Learning from Observations.
We show that it requires considerable fewer interactions to achieve expert performance, outperforming current state-of-the-art on-policy methods.
arXiv Detail & Related papers (2023-06-16T12:43:47Z) - Optimizing Trading Strategies in Quantitative Markets using Multi-Agent
Reinforcement Learning [11.556829339947031]
This paper explores the fusion of two established financial trading strategies, namely the constant proportion portfolio insurance ( CPPI) and the time-invariant portfolio protection (TIPP)
We introduce two novel multi-agent RL (MARL) methods, CPPI-MADDPG and TIPP-MADDPG, tailored for probing strategic trading within quantitative markets.
Our empirical findings reveal that the CPPI-MADDPG and TIPP-MADDPG strategies consistently outpace their traditional counterparts.
arXiv Detail & Related papers (2023-03-15T11:47:57Z) - Approximating Energy Market Clearing and Bidding With Model-Based
Reinforcement Learning [0.0]
Multi-agent Reinforcement learning (MARL) is a promising new approach to predicting the expected profit-maximizing behavior of energy market participants in simulation.
We provide a model of the energy market to a basic MARL algorithm in the form of a learned OPF approximation and explicit market rules.
Our experiments demonstrate that the model reduces training time by about one order of magnitude but at the cost of a slightly worse performance.
arXiv Detail & Related papers (2023-03-03T08:26:22Z) - A Multi-Agent Deep Reinforcement Learning Approach for a Distributed
Energy Marketplace in Smart Grids [58.666456917115056]
This paper presents a Reinforcement Learning based energy market for a prosumer dominated microgrid.
The proposed market model facilitates a real-time and demanddependent dynamic pricing environment, which reduces grid costs and improves the economic benefits for prosumers.
arXiv Detail & Related papers (2020-09-23T02:17:51Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
A key component for the successful renewable energy sources integration is the usage of energy storage.
We propose a novel modelling framework for the strategic participation of energy storage in the European continuous intraday market.
An distributed version of the fitted Q algorithm is chosen for solving this problem due to its sample efficiency.
Results indicate that the agent converges to a policy that achieves in average higher total revenues than the benchmark strategy.
arXiv Detail & Related papers (2020-04-13T13:50:13Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.