Zero-shot Performance of Generative AI in Brazilian Portuguese Medical Exam
- URL: http://arxiv.org/abs/2507.19885v1
- Date: Sat, 26 Jul 2025 09:34:52 GMT
- Title: Zero-shot Performance of Generative AI in Brazilian Portuguese Medical Exam
- Authors: Cesar Augusto Madid Truyts, Amanda Gomes Rabelo, Gabriel Mesquita de Souza, Daniel Scaldaferri Lages, Adriano Jose Pereira, Uri Adrian Prync Flato, Eduardo Pontes dos Reis, Joaquim Edson Vieira, Paulo Sergio Panse Silveira, Edson Amaro Junior,
- Abstract summary: Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have achieved notable advancements in natural language processing and medical applications.<n>This study investigates the capability of six LLMs (GPT-4.0 Turbo, LLaMA-3-8B, LLaMA-3-70B, Mixtral 8x7B Instruct, Titan Text G1-Express, and Command R+) and four MLLMs (Claude-3.5-Sonnet, Claude-3-Opus, Claude-3-Sonnet, and Claude-3-Haiku) to answer questions written in Brazilian spoken portuguese.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial intelligence (AI) has shown the potential to revolutionize healthcare by improving diagnostic accuracy, optimizing workflows, and personalizing treatment plans. Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have achieved notable advancements in natural language processing and medical applications. However, the evaluation of these models has focused predominantly on the English language, leading to potential biases in their performance across different languages. This study investigates the capability of six LLMs (GPT-4.0 Turbo, LLaMA-3-8B, LLaMA-3-70B, Mixtral 8x7B Instruct, Titan Text G1-Express, and Command R+) and four MLLMs (Claude-3.5-Sonnet, Claude-3-Opus, Claude-3-Sonnet, and Claude-3-Haiku) to answer questions written in Brazilian spoken portuguese from the medical residency entrance exam of the Hospital das Cl\'inicas da Faculdade de Medicina da Universidade de S\~ao Paulo (HCFMUSP) - the largest health complex in South America. The performance of the models was benchmarked against human candidates, analyzing accuracy, processing time, and coherence of the generated explanations. The results show that while some models, particularly Claude-3.5-Sonnet and Claude-3-Opus, achieved accuracy levels comparable to human candidates, performance gaps persist, particularly in multimodal questions requiring image interpretation. Furthermore, the study highlights language disparities, emphasizing the need for further fine-tuning and data set augmentation for non-English medical AI applications. Our findings reinforce the importance of evaluating generative AI in various linguistic and clinical settings to ensure a fair and reliable deployment in healthcare. Future research should explore improved training methodologies, improved multimodal reasoning, and real-world clinical integration of AI-driven medical assistance.
Related papers
- Bridging Language Barriers in Healthcare: A Study on Arabic LLMs [1.2006896500048552]
This paper investigates the challenges of developing large language models proficient in both multilingual understanding and medical knowledge.<n>We find that larger models with carefully calibrated language ratios achieve superior performance on native-language clinical tasks.
arXiv Detail & Related papers (2025-01-16T20:24:56Z) - A Comprehensive Evaluation of Large Language Models on Mental Illnesses in Arabic Context [0.9074663948713616]
Mental health disorders pose a growing public health concern in the Arab world.<n>This study comprehensively evaluates 8 large language models (LLMs) on diverse mental health datasets.
arXiv Detail & Related papers (2025-01-12T16:17:25Z) - Adapting LLMs for the Medical Domain in Portuguese: A Study on Fine-Tuning and Model Evaluation [1.922611370494431]
This study evaluates the performance of large language models (LLMs) as medical agents in Portuguese.
The InternLM2 model, with initial training on medical data, presented the best overall performance.
DrBode models, derived from ChatBode, exhibited a phenomenon of catastrophic forgetting of acquired medical knowledge.
arXiv Detail & Related papers (2024-09-30T19:10:03Z) - The Role of Language Models in Modern Healthcare: A Comprehensive Review [2.048226951354646]
The application of large language models (LLMs) in healthcare has gained significant attention.
This review examines the trajectory of language models from their early stages to the current state-of-the-art LLMs.
arXiv Detail & Related papers (2024-09-25T12:15:15Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - Enhancing Healthcare through Large Language Models: A Study on Medical Question Answering [13.237829215746443]
Sentence-t5 + Mistral 7B model excels in understanding and generating precise medical answers.
Our findings highlight the potential of integrating sophisticated LLMs in medical contexts.
arXiv Detail & Related papers (2024-08-08T00:35:39Z) - Towards Building Multilingual Language Model for Medicine [54.1382395897071]
We construct a multilingual medical corpus, containing approximately 25.5B tokens encompassing 6 main languages.
We propose a multilingual medical multi-choice question-answering benchmark with rationale, termed as MMedBench.
Our final model, MMed-Llama 3, with only 8B parameters, achieves superior performance compared to all other open-source models on both MMedBench and English benchmarks.
arXiv Detail & Related papers (2024-02-21T17:47:20Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - MedAlign: A Clinician-Generated Dataset for Instruction Following with
Electronic Medical Records [60.35217378132709]
Large language models (LLMs) can follow natural language instructions with human-level fluency.
evaluating LLMs on realistic text generation tasks for healthcare remains challenging.
We introduce MedAlign, a benchmark dataset of 983 natural language instructions for EHR data.
arXiv Detail & Related papers (2023-08-27T12:24:39Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
We present the first Chinese Biomedical Language Understanding Evaluation benchmark.
It is a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification.
We report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.
arXiv Detail & Related papers (2021-06-15T12:25:30Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
We construct a new dataset named MedLane to support the development and evaluation of automated clinical language simplification approaches.
We propose a new model called DECLARE that follows the human annotation procedure and achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-12-04T06:09:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.