Dimer-Enhanced Optimization: A First-Order Approach to Escaping Saddle Points in Neural Network Training
- URL: http://arxiv.org/abs/2507.19968v1
- Date: Sat, 26 Jul 2025 14:57:32 GMT
- Title: Dimer-Enhanced Optimization: A First-Order Approach to Escaping Saddle Points in Neural Network Training
- Authors: Yue Hu, Zanxia Cao, Yingchao Liu,
- Abstract summary: Dimer method is a first-order technique that constructs two closely spaced points to probe the local geometry of a potential energy surface.<n>Inspired by its use in molecular dynamics simulations for locating saddle points, we propose Dimer-Enhanced Optimization.<n>DEO guides the away from saddle points and flat regions, enhancing training efficiency with non-stepwise updates.
- Score: 5.9408311406202285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: First-order optimization methods, such as SGD and Adam, are widely used for training large-scale deep neural networks due to their computational efficiency and robust performance. However, relying solely on gradient information, these methods often struggle to navigate complex loss landscapes with flat regions, plateaus, and saddle points. Second-order methods, which use curvature information from the Hessian matrix, can address these challenges but are computationally infeasible for large models. The Dimer method, a first-order technique that constructs two closely spaced points to probe the local geometry of a potential energy surface, efficiently estimates curvature using only gradient information. Inspired by its use in molecular dynamics simulations for locating saddle points, we propose Dimer-Enhanced Optimization (DEO), a novel framework to escape saddle points in neural network training. DEO adapts the Dimer method to explore a broader region of the loss landscape, approximating the Hessian's smallest eigenvector without computing the full matrix. By periodically projecting the gradient onto the subspace orthogonal to the minimum curvature direction, DEO guides the optimizer away from saddle points and flat regions, enhancing training efficiency with non-stepwise updates. Preliminary experiments on a Transformer toy model show DEO achieves competitive performance compared to standard first-order methods, improving navigation of complex loss landscapes. Our work repurposes physics-inspired, first-order curvature estimation to enhance neural network training in high-dimensional spaces.
Related papers
- Optimistic Gradient Learning with Hessian Corrections for High-Dimensional Black-Box Optimization [14.073853819633745]
Black-box algorithms are designed to optimize functions without relying on their underlying analytical structure or gradient information.<n>We propose two novel gradient learning variants to address the challenges posed by high-dimensional, complex, and highly non-linear problems.
arXiv Detail & Related papers (2025-02-07T11:03:50Z) - Deep Loss Convexification for Learning Iterative Models [11.36644967267829]
Iterative methods such as iterative closest point (ICP) for point cloud registration often suffer from bad local optimality.
We propose learning to form a convex landscape around each ground truth.
arXiv Detail & Related papers (2024-11-16T01:13:04Z) - NeuralGF: Unsupervised Point Normal Estimation by Learning Neural
Gradient Function [55.86697795177619]
Normal estimation for 3D point clouds is a fundamental task in 3D geometry processing.
We introduce a new paradigm for learning neural gradient functions, which encourages the neural network to fit the input point clouds.
Our excellent results on widely used benchmarks demonstrate that our method can learn more accurate normals for both unoriented and oriented normal estimation tasks.
arXiv Detail & Related papers (2023-11-01T09:25:29Z) - Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
We propose a deep learning approach to learn gradient vectors with consistent orientation from 3D point clouds for normal estimation.
We learn an angular distance field based on local plane geometry to refine the coarse gradient vectors.
Our method efficiently conducts global gradient approximation while achieving better accuracy and ability generalization of local feature description.
arXiv Detail & Related papers (2023-09-17T08:35:11Z) - Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for
Deep Learning [8.173034693197351]
We propose a new per-layer adaptive step-size procedure for first-order optimization methods in deep learning.
The proposed approach exploits the layer-wise curvature information contained in the diagonal blocks of the Hessian in deep neural networks (DNNs) to compute adaptive step-sizes (i.e., LRs) for each layer.
Numerical experiments show that SGD with momentum and AdamW combined with the proposed per-layer step-sizes are able to choose effective LR schedules.
arXiv Detail & Related papers (2023-05-23T04:12:55Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
Forward learning is a biologically plausible alternative to backprop for learning deep neural networks.
We show that it is possible to substantially reduce the variance of the forward gradient by applying perturbations to activations rather than weights.
Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.
arXiv Detail & Related papers (2022-10-07T03:52:27Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
We show that gradient descent can efficiently learn ball indicator functions using a depth 2 neural network with two layers of sigmoidal activations.
This is the first optimization-based separation result where the approximation benefits of the stronger architecture provably manifest in practice.
arXiv Detail & Related papers (2021-12-04T18:07:47Z) - Adapting Stepsizes by Momentumized Gradients Improves Optimization and
Generalization [89.66571637204012]
textscAdaMomentum on vision, and achieves state-the-art results consistently on other tasks including language processing.
textscAdaMomentum on vision, and achieves state-the-art results consistently on other tasks including language processing.
textscAdaMomentum on vision, and achieves state-the-art results consistently on other tasks including language processing.
arXiv Detail & Related papers (2021-06-22T03:13:23Z) - Channel-Directed Gradients for Optimization of Convolutional Neural
Networks [50.34913837546743]
We introduce optimization methods for convolutional neural networks that can be used to improve existing gradient-based optimization in terms of generalization error.
We show that defining the gradients along the output channel direction leads to a performance boost, while other directions can be detrimental.
arXiv Detail & Related papers (2020-08-25T00:44:09Z) - A block coordinate descent optimizer for classification problems
exploiting convexity [0.0]
We introduce a coordinate descent method to deep linear networks for classification tasks that exploits convexity of the cross-entropy loss in the weights of the hidden layer.
By alternating between a second-order method to find globally optimal parameters for the linear layer and gradient descent to the hidden layers, we ensure an optimal fit of the adaptive basis to data throughout training.
arXiv Detail & Related papers (2020-06-17T19:49:06Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.