Discrete Gaussian Vector Fields On Meshes
- URL: http://arxiv.org/abs/2507.20024v1
- Date: Sat, 26 Jul 2025 17:43:31 GMT
- Title: Discrete Gaussian Vector Fields On Meshes
- Authors: Michael Gillan, Stefan Siegert, Ben Youngman,
- Abstract summary: This work shows that discrete intrinsic Gaussian processes for vector-valued data can be developed from discrete differential operators defined with respect to a mesh.<n>We show that these models can capture harmonic flows, incorporate boundary conditions, and model non-stationary data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Though the underlying fields associated with vector-valued environmental data are continuous, observations themselves are discrete. For example, climate models typically output grid-based representations of wind fields or ocean currents, and these are often downscaled to a discrete set of points. By treating the area of interest as a two-dimensional manifold that can be represented as a triangular mesh and embedded in Euclidean space, this work shows that discrete intrinsic Gaussian processes for vector-valued data can be developed from discrete differential operators defined with respect to a mesh. These Gaussian processes account for the geometry and curvature of the manifold whilst also providing a flexible and practical formulation that can be readily applied to any two-dimensional mesh. We show that these models can capture harmonic flows, incorporate boundary conditions, and model non-stationary data. Finally, we apply these models to downscaling stationary and non-stationary gridded wind data on the globe, and to inference of ocean currents from sparse observations in bounded domains.
Related papers
- Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
In this work we explore a family of expressive and interpretable distributions over circle-valued random functions.<n>For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Gibbs sampling.<n>We present experiments applying this model to the prediction of wind directions and the percentage of the running gait cycle as a function of joint angles.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Topological Obstructions and How to Avoid Them [22.45861345237023]
We show that local optima can arise due to singularities or an incorrect degree or winding number.
We propose a new flow-based model that maps data points to multimodal distributions over geometric spaces.
arXiv Detail & Related papers (2023-12-12T18:56:14Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Diffusion Probabilistic Fields [42.428882785136295]
We introduce Diffusion Probabilistic Fields (DPF), a diffusion model that can learn distributions over continuous functions defined over metric spaces.
We empirically show that DPF effectively deals with different modalities like 2D images and 3D geometry, in addition to modeling distributions over fields defined on non-Euclidean metric spaces.
arXiv Detail & Related papers (2023-03-01T01:37:24Z) - Convolutional Filtering on Sampled Manifolds [122.06927400759021]
We show that convolutional filtering on a sampled manifold converges to continuous manifold filtering.
Our findings are further demonstrated empirically on a problem of navigation control.
arXiv Detail & Related papers (2022-11-20T19:09:50Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
Normalizing Flows (NFs) are flexible explicit generative models that have been shown to accurately model complex real-world data distributions.
We propose an optimization objective that recovers the most likely point on the manifold given a sample from the perturbed distribution.
Finally, we focus on 3D point clouds for which we utilize the explicit nature of NFs, i.e. surface normals extracted from the gradient of the log-likelihood and the log-likelihood itself.
arXiv Detail & Related papers (2022-08-18T16:07:59Z) - Sinusoidal Sensitivity Calculation for Line Segment Geometries [0.0]
This paper presents a closed-form solution to the sinusoidal coil sensitivity model proposed by Kern et al.
It allows for precise computations of varied, simulated bias fields for ground-truth debias datasets.
arXiv Detail & Related papers (2022-08-05T09:30:55Z) - The Manifold Scattering Transform for High-Dimensional Point Cloud Data [16.500568323161563]
We present practical schemes for implementing the manifold scattering transform to datasets arising in naturalistic systems.
We show that our methods are effective for signal classification and manifold classification tasks.
arXiv Detail & Related papers (2022-06-21T02:15:00Z) - Isometric Gaussian Process Latent Variable Model for Dissimilarity Data [0.0]
We present a probabilistic model where the latent variable respects both the distances and the topology of the modeled data.
The model is inferred by variational inference based on observations of pairwise distances.
arXiv Detail & Related papers (2020-06-21T08:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.