論文の概要: PITA: Preference-Guided Inference-Time Alignment for LLM Post-Training
- arxiv url: http://arxiv.org/abs/2507.20067v1
- Date: Sat, 26 Jul 2025 21:46:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:56.862121
- Title: PITA: Preference-Guided Inference-Time Alignment for LLM Post-Training
- Title(参考訳): PITA: LLM後トレーニングのための推論時間アライメント
- Authors: Sarat Chandra Bobbili, Ujwal Dinesha, Dheeraj Narasimha, Srinivas Shakkottai,
- Abstract要約: PITAはLLMのトークン生成に直接好みフィードバックを統合する新しいフレームワークである。
PITAは、微調整をせずに、推論時にトークン確率を変更するための、小さな嗜好に基づくガイダンスポリシーを学習する。
我々は,数学的推論や感情分類など,多種多様なタスクにまたがるPITAを評価する。
- 参考スコア(独自算出の注目度): 9.093854840532062
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inference-time alignment enables large language models (LLMs) to generate outputs aligned with end-user preferences without further training. Recent post-training methods achieve this by using small guidance models to modify token generation during inference. These methods typically optimize a reward function KL-regularized by the original LLM taken as the reference policy. A critical limitation, however, is their dependence on a pre-trained reward model, which requires fitting to human preference feedback--a potentially unstable process. In contrast, we introduce PITA, a novel framework that integrates preference feedback directly into the LLM's token generation, eliminating the need for a reward model. PITA learns a small preference-based guidance policy to modify token probabilities at inference time without LLM fine-tuning, reducing computational cost and bypassing the pre-trained reward model dependency. The problem is framed as identifying an underlying preference distribution, solved through stochastic search and iterative refinement of the preference-based guidance model. We evaluate PITA across diverse tasks, including mathematical reasoning and sentiment classification, demonstrating its effectiveness in aligning LLM outputs with user preferences.
- Abstract(参考訳): 推論時アライメントにより、より大きな言語モデル(LLM)は、さらなるトレーニングをすることなく、エンドユーザの好みに沿った出力を生成することができる。
最近のポストトレーニング手法では、小さなガイダンスモデルを用いて推論中のトークン生成を修正している。
これらの手法は典型的には、参照ポリシーとして取られた元のLLMによって正規化された報酬関数KLを最適化する。
しかし、重要な制限は、事前訓練された報酬モデルに依存していることだ。
対照的に、LLMのトークン生成に直接好みフィードバックを統合する新しいフレームワークであるPITAを導入し、報酬モデルの必要性を排除した。
PITAは,LLMの微調整を伴わず,計算コストを低減し,事前学習した報酬モデル依存性を回避し,推論時にトークン確率を変更するための,小さな嗜好に基づくガイダンスポリシを学習する。
この問題は、確率的探索と嗜好に基づくガイダンスモデルの反復的改善によって解決された、基礎となる嗜好分布を同定するものである。
数学的推論や感情分類など多種多様なタスクにまたがるPITAを評価し,LLM出力とユーザの嗜好の整合性を示す。
関連論文リスト
- Debiasing Online Preference Learning via Preference Feature Preservation [64.55924745257951]
最近の嗜好学習フレームワークは、二対比較とスカラー報酬で人間の嗜好を簡単にする。
これにより、大規模言語モデルの反応は、主に好まれる特徴に偏り、オンラインの嗜好学習ステップのイテレーション中に悪化する可能性がある。
本研究では,人間の嗜好特徴の分布を維持するための嗜好特徴保存法を提案し,オンライン選好学習プロセスを通じてそのようなリッチな信号を利用する。
論文 参考訳(メタデータ) (2025-06-06T13:19:07Z) - IPO: Your Language Model is Secretly a Preference Classifier [1.8921784053120494]
人からのフィードバックから強化学習(RLHF)が,大規模言語モデルと人間の嗜好を整合させる主要な手法として登場した。
本稿では、生成言語モデルを選好分類器として活用する代替手法として、Implicit Preference Optimization (IPO)を提案する。
この結果から、IPOを通じてトレーニングされたモデルは、最先端の報酬モデルを使って好みを得られるモデルに匹敵するパフォーマンスを達成できることがわかった。
論文 参考訳(メタデータ) (2025-02-22T10:59:11Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
大きな言語モデル(LLM)は、日々のアプリケーションにますます組み込まれています。
個人ユーザの多様な嗜好との整合性を確保することは、重要な課題となっている。
数発のステアライメントのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-18T16:14:59Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
本稿では,属性制御付き大規模言語モデル(LLM)の制約学習スキーマを提案する。
提案手法は, ベンチマーク上での競合性能と毒性検出タスクを達成しながら, 不適切な応答を少ないLCMに導出することを示す。
論文 参考訳(メタデータ) (2024-10-07T23:38:58Z) - Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
事前訓練された大規模言語モデル(LLM)は、一貫性のある記事を生成するのに優れていますが、そのアウトプットは非現実的、有毒、あるいはユーザの期待に沿わないかもしれません。
現在のアプローチは、モデルアライメントを改善するために、人間のフィードバックによる強化学習を使うことに重点を置いている。
トークンレベルの微粒化によるLCMアライメント向上手法を提案する。
論文 参考訳(メタデータ) (2024-06-04T20:21:45Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Value Augmented Sampling for Language Model Alignment and Personalization [39.070662999014836]
報酬最適化のための新しいフレームワーク、価値拡張サンプリング(VAS)を提案する。
VASは、ポリシーと値関数を併用することなく、最適報酬最大化ポリシーを解く。
我々のアルゴリズムは、いくつかの報酬を作曲し、展開期間中に各報酬の幅を制御できる新しい能力を解き放ちます。
論文 参考訳(メタデータ) (2024-05-10T17:59:04Z) - Nash Learning from Human Feedback [86.09617990412941]
ペアワイズフィードバックを用いた大規模言語モデルの微調整のための代替パイプラインを提案する。
我々はこのアプローチを人間のフィードバックからナッシュラーニング(NLHF)と呼ぶ。
ミラー降下原理に基づく新しいアルゴリズム解であるNash-MDを提案する。
論文 参考訳(メタデータ) (2023-12-01T19:26:23Z) - Adversarial Preference Optimization: Enhancing Your Alignment via RM-LLM Game [31.66896160733569]
そこで本稿では,より効率的な人選好最適化を目的としたAPO(Adversarial Preference Optimization)フレームワークを提案する。
提案手法は,LLMの有効性と無害性の観点から,既存のアライメントベースラインをさらに強化する。
論文 参考訳(メタデータ) (2023-11-14T10:10:31Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
本稿では,RLHFにおける報酬モデルの新たなパラメータ化について紹介する。
DPO(Direct Preference Optimization)と呼ばれる結果のアルゴリズムは、安定的で、性能が高く、計算的にも軽量である。
我々の実験は、DPOが人間の好みに合わせて微調整できるだけでなく、既存の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-29T17:57:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。