論文の概要: EcoTransformer: Attention without Multiplication
- arxiv url: http://arxiv.org/abs/2507.20096v1
- Date: Sun, 27 Jul 2025 01:32:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:56.885512
- Title: EcoTransformer: Attention without Multiplication
- Title(参考訳): EcoTransformer: 重複のない注意
- Authors: Xin Gao, Xingming Xu,
- Abstract要約: 本稿では,新しいトランスフォーマーアーキテクチャであるEcoTransformerを提案する。
新しいアテンションスコア計算には行列乗算が不要である。
NLP、バイオインフォマティクス、ビジョンタスクにおいて、スケールしたドット製品に匹敵する、あるいは超えている。
- 参考スコア(独自算出の注目度): 11.555898511144418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Transformer, with its scaled dot-product attention mechanism, has become a foundational architecture in modern AI. However, this mechanism is computationally intensive and incurs substantial energy costs. We propose a new Transformer architecture EcoTransformer, in which the output context vector is constructed as the convolution of the values using a Laplacian kernel, where the distances are measured by the L1 metric between the queries and keys. Compared to dot-product based attention, the new attention score calculation is free of matrix multiplication. It performs on par with, or even surpasses, scaled dot-product attention in NLP, bioinformatics, and vision tasks, while consuming significantly less energy.
- Abstract(参考訳): Transformerは、その拡張されたドットプロダクトアテンション機構によって、現代のAIの基盤となるアーキテクチャとなった。
しかし、このメカニズムは計算集約的であり、かなりのエネルギーコストを発生させる。
本稿では,Laplacianカーネルを用いて,出力コンテキストベクトルを値の畳み込みとして構築した新しいTransformerアーキテクチャであるEcoTransformerを提案する。
ドット積に基づくアテンションと比較すると,新しいアテンションスコア計算には行列乗算が不要である。
NLP、バイオインフォマティクス、視覚タスクにおいて、スケールしたドット積の注意力に匹敵する、あるいは超えている。
関連論文リスト
- Token Statistics Transformer: Linear-Time Attention via Variational Rate Reduction [29.12836710966048]
本稿では,トークン数に応じて計算複雑性が線形にスケールする新しいトランスフォーマーアテンション演算子を提案する。
本研究は, トランスフォーマーアーキテクチャの成功に対して, ペアワイズ類似性スタイルの注意機構が重要であるという従来の知恵に疑問を投げかけるものである。
論文 参考訳(メタデータ) (2024-12-23T18:59:21Z) - DAPE V2: Process Attention Score as Feature Map for Length Extrapolation [63.87956583202729]
我々は特徴写像としての注意を概念化し、コンピュータビジョンにおける処理方法を模倣するために畳み込み演算子を適用した。
様々な注意関係のモデルに適応できる新しい洞察は、現在のTransformerアーキテクチャがさらなる進化の可能性があることを示している。
論文 参考訳(メタデータ) (2024-10-07T07:21:49Z) - Analog In-Memory Computing Attention Mechanism for Fast and Energy-Efficient Large Language Models [0.755189019348525]
自己注意によって駆動されるトランスフォーマーネットワークは、大規模言語モデルの中心である。
生成トランスフォーマーでは、自己アテンションはキャッシュメモリを使用してトークンプロジェクションを格納し、各ステップで再計算を避ける。
本稿では、ゲインセルと呼ばれる新しいチャージベースのメモリをベースとした、独自の自己アテンションインメモリコンピューティングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-09-28T11:00:11Z) - Symmetric Dot-Product Attention for Efficient Training of BERT Language Models [5.838117137253223]
本稿では,Transformer アーキテクチャによって導入された自己注意機構の代替互換性関数を提案する。
BERTライクなモデルの事前トレーニングに適用すると、この新しい対称アテンション機構はGLUEベンチマークで79.36点に達し、従来の実装では78.74点だった。
論文 参考訳(メタデータ) (2024-06-10T15:24:15Z) - Attention Is Not All You Need Anymore [3.9693969407364427]
本稿では,トランスフォーマーの自己保持機構に対するドロップイン置換のファミリを提案する。
実験結果から,自己保持機構をSHEに置き換えることによってトランスフォーマーの性能が向上することが示唆された。
提案されたエクストラクターは、自己保持機構よりも速く走ることができる。
論文 参考訳(メタデータ) (2023-08-15T09:24:38Z) - Isomer: Isomerous Transformer for Zero-shot Video Object Segmentation [59.91357714415056]
コンテクスト共有変換器(CST)とセマンティックガザリング散乱変換器(SGST)の2つの変種を提案する。
CSTは、軽量な計算により、画像フレーム内のグローバル共有コンテキスト情報を学習し、SGSTは、前景と背景のセマンティック相関を別々にモデル化する。
多段核融合にバニラ変換器を使用するベースラインと比較して,我々は13倍の速度向上を実現し,新しい最先端ZVOS性能を実現する。
論文 参考訳(メタデータ) (2023-08-13T06:12:00Z) - FLatten Transformer: Vision Transformer using Focused Linear Attention [80.61335173752146]
線形注意(linear attention)は、その線形複雑性に対して、はるかに効率的な代替手段を提供する。
現在の線形アテンションアプローチは、大きなパフォーマンス劣化に悩まされるか、追加の計算オーバーヘッドを導入するかのいずれかである。
本研究では,高効率と表現性の両方を実現するために,新しいFocused Linear Attentionモジュールを提案する。
論文 参考訳(メタデータ) (2023-08-01T10:37:12Z) - Segmented Recurrent Transformer: An Efficient Sequence-to-Sequence Model [10.473819332984005]
分割された(局所的な)注意と再帰的な注意を結合した分節再帰変圧器(SRformer)を提案する。
提案モデルでは,分割変圧器よりも高いROUGE1スコアを6-22%で達成し,他の再帰変圧器よりも優れている。
論文 参考訳(メタデータ) (2023-05-24T03:47:22Z) - EcoFormer: Energy-Saving Attention with Linear Complexity [40.002608785252164]
Transformerはシーケンシャルデータをモデル化する変換フレームワークである。
本研究では,高次元ソフトマックスアテンションにカスタマイズした新しいバイナライゼーションパラダイムを提案する。
EcoFormerは、標準の注意を払って、一貫して同等のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2022-09-19T13:28:32Z) - Attention Mechanism with Energy-Friendly Operations [61.58748425876866]
我々はエネルギー消費の観点から注意機構を再考する。
我々は、乗算を選択的操作または加算に置き換えることで、新しい注意モデルを構築する。
3つの機械翻訳タスクにおける実験結果から,提案手法が再現可能な精度を実現することを示す。
論文 参考訳(メタデータ) (2022-04-28T08:50:09Z) - Combiner: Full Attention Transformer with Sparse Computation Cost [142.10203598824964]
計算の複雑さを低く保ちつつ、各注目ヘッドにフルアテンション機能を提供するコンバインダを提案する。
既存のスパース変圧器で使用されるスパースアテンションパターンのほとんどは、そのような分解設計をフルアテンションに刺激することができることを示す。
自己回帰的タスクと双方向シーケンスタスクの両方に関する実験的評価は、このアプローチの有効性を示す。
論文 参考訳(メタデータ) (2021-07-12T22:43:11Z) - Local-to-Global Self-Attention in Vision Transformers [130.0369761612812]
トランスフォーマーはコンピュータビジョンタスクに大きな可能性を示した。
最近のTransformerモデルは階層設計を採用しており、セルフアテンションはローカルウィンドウ内でのみ計算される。
この設計は効率を大幅に改善するが、早い段階ではグローバルな特徴推論が欠如している。
本研究では,トランスフォーマーのマルチパス構造を設計し,各ステージにおける複数の粒度での局所的・言語的推論を可能にする。
論文 参考訳(メタデータ) (2021-07-10T02:34:55Z) - Stable, Fast and Accurate: Kernelized Attention with Relative Positional
Encoding [63.539333383965726]
相対的位置符号化(RPE)を用いた変換器の注意計算を高速化する新しい手法を提案する。
相対的な位置符号化がToeplitz行列を形成するという観測に基づいて、Fast Fourier Transform (FFT) を用いて、RPEによるカーネル化された注意を効率的に計算できることを数学的に示す。
論文 参考訳(メタデータ) (2021-06-23T17:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。