LRR-Bench: Left, Right or Rotate? Vision-Language models Still Struggle With Spatial Understanding Tasks
- URL: http://arxiv.org/abs/2507.20174v1
- Date: Sun, 27 Jul 2025 08:31:24 GMT
- Title: LRR-Bench: Left, Right or Rotate? Vision-Language models Still Struggle With Spatial Understanding Tasks
- Authors: Fei Kong, Jinhao Duan, Kaidi Xu, Zhenhua Guo, Xiaofeng Zhu, Xiaoshuang Shi,
- Abstract summary: It remains underexplored how Vision-Language Models (VLMs) recognize spatial relationships and perceive spatial movement.<n>In this work, we introduce a spatial evaluation pipeline and construct a corresponding benchmark.<n>We conduct experiments on multiple state-of-the-art VLMs and observe that there is significant room for improvement.
- Score: 22.011855291417856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world applications, such as autonomous driving and humanoid robot manipulation, require precise spatial perception. However, it remains underexplored how Vision-Language Models (VLMs) recognize spatial relationships and perceive spatial movement. In this work, we introduce a spatial evaluation pipeline and construct a corresponding benchmark. Specifically, we categorize spatial understanding into two main types: absolute spatial understanding, which involves querying the absolute spatial position (e.g., left, right) of an object within an image, and 3D spatial understanding, which includes movement and rotation. Notably, our dataset is entirely synthetic, enabling the generation of test samples at a low cost while also preventing dataset contamination. We conduct experiments on multiple state-of-the-art VLMs and observe that there is significant room for improvement in their spatial understanding abilities. Explicitly, in our experiments, humans achieve near-perfect performance on all tasks, whereas current VLMs attain human-level performance only on the two simplest tasks. For the remaining tasks, the performance of VLMs is distinctly lower than that of humans. In fact, the best-performing Vision-Language Models even achieve near-zero scores on multiple tasks. The dataset and code are available on https://github.com/kong13661/LRR-Bench.
Related papers
- SURPRISE3D: A Dataset for Spatial Understanding and Reasoning in Complex 3D Scenes [105.8644620467576]
We introduce Stextscurprise3D, a novel dataset designed to evaluate language-guided spatial reasoning segmentation in complex 3D scenes.<n>Stextscurprise3D consists of more than 200k vision language pairs across 900+ detailed indoor scenes from ScanNet++ v2.<n>The dataset contains 89k+ human-annotated spatial queries deliberately crafted without object name.
arXiv Detail & Related papers (2025-07-10T14:01:24Z) - SpaRE: Enhancing Spatial Reasoning in Vision-Language Models with Synthetic Data [7.142118464319378]
Vision-language models (VLMs) work well in tasks ranging from image captioning to visual question answering (VQA)<n>We find that spatial relations are generally rare in widely used VL datasets, with only a few being well represented.<n>We construct a synthetic VQA dataset focused on spatial reasoning generated from hyper-detailed image descriptions.
arXiv Detail & Related papers (2025-04-29T11:18:38Z) - Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models [14.442394137843923]
We present a detailed analysis that first delineates the core elements of spatial reasoning.<n>We then assesses the performance of these models in both synthetic and real-world images.
arXiv Detail & Related papers (2025-03-25T14:34:06Z) - HA-VLN: A Benchmark for Human-Aware Navigation in Discrete-Continuous Environments with Dynamic Multi-Human Interactions, Real-World Validation, and an Open Leaderboard [63.54109142085327]
Vision-and-Language Navigation (VLN) systems often focus on either discrete (panoramic) or continuous (free-motion) paradigms alone.<n>We introduce a unified Human-Aware VLN benchmark that merges these paradigms under explicit social-awareness constraints.
arXiv Detail & Related papers (2025-03-18T13:05:55Z) - Human Cognitive Benchmarks Reveal Foundational Visual Gaps in MLLMs [65.93003087656754]
VisFactor is a benchmark that digitizes 20 vision-centric subtests from a well-established cognitive psychology assessment.<n>We evaluate 20 frontier Multimodal Large Language Models (MLLMs) from GPT, Gemini, Claude, LLaMA, Qwen, and SEED families.<n>The best-performing model achieves a score of only 25.19 out of 100, with consistent failures on tasks such as mental rotation, spatial relation inference, and figure-ground discrimination.
arXiv Detail & Related papers (2025-02-23T04:21:32Z) - HAMSTER: Hierarchical Action Models For Open-World Robot Manipulation [54.03004125910057]
We show that hierarchical vision-language-action models can be more effective in utilizing off-domain data than standard monolithic VLA models.<n>We show that, with the hierarchical design, the high-level VLM can transfer across significant domain gaps between the off-domain finetuning data and real-robot testing scenarios.
arXiv Detail & Related papers (2025-02-08T07:50:22Z) - Structured Spatial Reasoning with Open Vocabulary Object Detectors [2.089191490381739]
Reasoning about spatial relationships between objects is essential for many real-world robotic tasks.
We introduce a structured probabilistic approach that integrates rich 3D geometric features with state-of-the-art open-vocabulary object detectors.
The approach is evaluated and compared against zero-shot performance of the state-of-the-art Vision and Language Models (VLMs) on spatial reasoning tasks.
arXiv Detail & Related papers (2024-10-09T19:37:01Z) - SpatialRGPT: Grounded Spatial Reasoning in Vision Language Models [68.13636352687257]
We introduce Spatial Region GPT (SpatialRGPT) to enhance VLMs' spatial perception and reasoning capabilities.
During inference, when provided with user-specified region proposals, SpatialRGPT can accurately perceive their relative directions and distances.
Our results demonstrate that SpatialRGPT significantly enhances performance in spatial reasoning tasks, both with and without local region prompts.
arXiv Detail & Related papers (2024-06-03T17:59:06Z) - SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning
Capabilities [59.39858959066982]
understanding and reasoning about spatial relationships is a fundamental capability for Visual Question Answering (VQA) and robotics.
We develop an automatic 3D spatial VQA data generation framework that scales up to 2 billion VQA examples on 10 million real-world images.
By training a VLM on such data, we significantly enhance its ability on both qualitative and quantitative spatial VQA.
arXiv Detail & Related papers (2024-01-22T18:01:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.