Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models
- URL: http://arxiv.org/abs/2503.19707v1
- Date: Tue, 25 Mar 2025 14:34:06 GMT
- Title: Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models
- Authors: Ilias Stogiannidis, Steven McDonagh, Sotirios A. Tsaftaris,
- Abstract summary: We present a detailed analysis that first delineates the core elements of spatial reasoning.<n>We then assesses the performance of these models in both synthetic and real-world images.
- Score: 14.442394137843923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-Language Models (VLMs) have recently emerged as powerful tools, excelling in tasks that integrate visual and textual comprehension, such as image captioning, visual question answering, and image-text retrieval. However, existing benchmarks for VLMs include spatial components, which often fail to isolate spatial reasoning from related tasks such as object detection or semantic comprehension. In this paper, we address these deficiencies with a multi-faceted approach towards understanding spatial reasoning. Informed by the diverse and multi-dimensional nature of human spatial reasoning abilities, we present a detailed analysis that first delineates the core elements of spatial reasoning: spatial relations, orientation and navigation, mental rotation, and spatial visualization, and then assesses the performance of these models in both synthetic and real-world images, bridging controlled and naturalistic contexts. We analyze 13 state-of-the-art Vision-Language Models, uncovering pivotal insights into their spatial reasoning performance. Our results reveal profound shortcomings in current VLMs, with average accuracy across the 13 models approximating random chance, highlighting spatial reasoning as a persistent obstacle. This work not only exposes the pressing need to advance spatial reasoning within VLMs but also establishes a solid platform for future exploration. Code available on GitHub (https://github.com/stogiannidis/srbench) and dataset available on HuggingFace (https://huggingface.co/datasets/stogiannidis/srbench).
Related papers
- Vision language models are unreliable at trivial spatial cognition [0.2902243522110345]
Vision language models (VLMs) are designed to extract relevant visuospatial information from images.
We develop a benchmark dataset -- TableTest -- whose images depict 3D scenes of objects arranged on a table, and used it to evaluate state-of-the-art VLMs.
Results show that performance could be degraded by minor variations of prompts that use equivalent descriptions.
arXiv Detail & Related papers (2025-04-22T17:38:01Z) - Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models [10.792834356227118]
Vision-Language Models (VLMs) excel at identifying and describing objects but struggle with spatial reasoning.
Inspired by the dual-pathway (ventral-dorsal) model of human vision, we investigate why VLMs fail spatial tasks despite strong object recognition capabilities.
arXiv Detail & Related papers (2025-03-21T17:51:14Z) - Why Is Spatial Reasoning Hard for VLMs? An Attention Mechanism Perspective on Focus Areas [52.478956204238315]
We study the spatial reasoning challenge from the lens of mechanistic interpretability.<n>We observe that successful spatial reasoning correlates strongly with the model's ability to align its attention with actual object locations.<n>Motivated by these findings, we propose ADAPTVIS to sharpen the attention on highly relevant regions when confident.
arXiv Detail & Related papers (2025-03-03T17:57:03Z) - Exploring Spatial Language Grounding Through Referring Expressions [17.524558622186657]
We propose using the Referring Expression task as a platform for the evaluation of spatial reasoning by Vision-language models (VLMs)<n>This platform provides the opportunity for a deeper analysis of spatial comprehension and grounding abilities when there is 1) ambiguity in object detection, 2) complex spatial expressions with a longer sentence structure and multiple spatial relations, and 3) expressions with negation ('not')<n>Our results highlight these challenges and behaviors and provide insight into research gaps and future directions.
arXiv Detail & Related papers (2025-02-04T22:58:15Z) - SPHERE: Unveiling Spatial Blind Spots in Vision-Language Models Through Hierarchical Evaluation [7.659514491338669]
Current vision-language models may grasp basic spatial cues but struggle with the multi-dimensional spatial reasoning necessary for human-like understanding and real-world applications.<n>We develop SPHERE, a hierarchical evaluation framework supported by a new human-annotated dataset.<n> Benchmark evaluation of state-of-the-art models reveals significant deficiencies, especially in reasoning about distance and proximity.
arXiv Detail & Related papers (2024-12-17T09:10:55Z) - REVISION: Rendering Tools Enable Spatial Fidelity in Vision-Language Models [67.55362046790512]
Vision-language models lack the ability to correctly reason over spatial relationships.
We develop the REVISION framework which improves spatial fidelity in vision-language models.
Our results and findings indicate that utilizing rendering-based frameworks is an effective approach for developing spatially-aware models.
arXiv Detail & Related papers (2024-08-05T04:51:46Z) - SpatialRGPT: Grounded Spatial Reasoning in Vision Language Models [68.13636352687257]
We introduce Spatial Region GPT (SpatialRGPT) to enhance VLMs' spatial perception and reasoning capabilities.
During inference, when provided with user-specified region proposals, SpatialRGPT can accurately perceive their relative directions and distances.
Our results demonstrate that SpatialRGPT significantly enhances performance in spatial reasoning tasks, both with and without local region prompts.
arXiv Detail & Related papers (2024-06-03T17:59:06Z) - SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning
Capabilities [59.39858959066982]
understanding and reasoning about spatial relationships is a fundamental capability for Visual Question Answering (VQA) and robotics.
We develop an automatic 3D spatial VQA data generation framework that scales up to 2 billion VQA examples on 10 million real-world images.
By training a VLM on such data, we significantly enhance its ability on both qualitative and quantitative spatial VQA.
arXiv Detail & Related papers (2024-01-22T18:01:01Z) - Towards Grounded Visual Spatial Reasoning in Multi-Modal Vision Language
Models [3.86170450233149]
We show that large vision-and-language models (VLMs) trained to match images with text lack fine-grained understanding of spatial relations.
We propose an alternative fine-grained, compositional approach for recognizing and ranking spatial clauses.
arXiv Detail & Related papers (2023-08-18T18:58:54Z) - Things not Written in Text: Exploring Spatial Commonsense from Visual
Signals [77.46233234061758]
We investigate whether models with visual signals learn more spatial commonsense than text-based models.
We propose a benchmark that focuses on the relative scales of objects, and the positional relationship between people and objects under different actions.
We find that image synthesis models are more capable of learning accurate and consistent spatial knowledge than other models.
arXiv Detail & Related papers (2022-03-15T17:02:30Z) - LanguageRefer: Spatial-Language Model for 3D Visual Grounding [72.7618059299306]
We develop a spatial-language model for a 3D visual grounding problem.
We show that our model performs competitively on visio-linguistic datasets proposed by ReferIt3D.
arXiv Detail & Related papers (2021-07-07T18:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.