論文の概要: What Language(s) Does Aya-23 Think In? How Multilinguality Affects Internal Language Representations
- arxiv url: http://arxiv.org/abs/2507.20279v1
- Date: Sun, 27 Jul 2025 13:53:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:57.369581
- Title: What Language(s) Does Aya-23 Think In? How Multilinguality Affects Internal Language Representations
- Title(参考訳): Aya-23はどんな言語を思い浮かべるか? マルチ言語が言語の内部表現にどのように影響するか
- Authors: Katharina Trinley, Toshiki Nakai, Tatiana Anikina, Tanja Baeumel,
- Abstract要約: 大規模言語モデル(LLM)は多言語タスクに優れるが、内部言語処理はあまり理解されていない。
我々は、バランスの取れた多言語データに基づいて訓練されたデコーダのみのLLMであるAya-23-8Bが、コードミックス、クローゼ、翻訳タスクをどのように処理するかを分析する。
- 参考スコア(独自算出の注目度): 3.7498611358320733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) excel at multilingual tasks, yet their internal language processing remains poorly understood. We analyze how Aya-23-8B, a decoder-only LLM trained on balanced multilingual data, handles code-mixed, cloze, and translation tasks compared to predominantly monolingual models like Llama 3 and Chinese-LLaMA-2. Using logit lens and neuron specialization analyses, we find: (1) Aya-23 activates typologically related language representations during translation, unlike English-centric models that rely on a single pivot language; (2) code-mixed neuron activation patterns vary with mixing rates and are shaped more by the base language than the mixed-in one; and (3) Aya-23's languagespecific neurons for code-mixed inputs concentrate in final layers, diverging from prior findings on decoder-only models. Neuron overlap analysis further shows that script similarity and typological relations impact processing across model types. These findings reveal how multilingual training shapes LLM internals and inform future cross-lingual transfer research.
- Abstract(参考訳): 大規模言語モデル(LLM)は多言語タスクに優れるが、内部言語処理はあまり理解されていない。
Llama 3 や Chinese-LLaMA-2 のようなモノリンガルモデルと比較して,Aya-23-8B はバランスの取れた多言語データに基づいて訓練され,コードミックス,クローゼ,翻訳タスクを処理する。
対数レンズとニューロンの特殊化分析を用いて,(1)Aya-23は単一ピボット言語に依存している英語中心のモデルとは異なり,翻訳中に類型的に関連した言語表現を活性化し,(2)コード混在ニューロンの活性化パターンは混合率によって変化し,混合イン言語よりもベース言語によって形づくられる,(3)コード混在入力に対するAya-23の言語特異的ニューロンは最終層に集中し,デコーダのみのモデルでの先行結果から分岐する。
ニューロン重なり解析により、スクリプトの類似性とタイプ的関係がモデルタイプ間での処理に影響を及ぼすことが示された。
これらの結果から,多言語学習がLLMの内部構造をどのように形成し,将来的な言語間移動研究に寄与するかが明らかとなった。
関連論文リスト
- How does Alignment Enhance LLMs' Multilingual Capabilities? A Language Neurons Perspective [64.79894853375478]
本稿では,言語ニューロン(言語特異的ニューロンや言語関連ニューロンを含む)と言語非依存ニューロンを検出する,より微細なニューロン識別アルゴリズムを提案する。
異なる種類のニューロンの分布特性に基づいて、多言語推論のためのLCMの内部過程を4つの部分に分割する。
我々は、異なる種類のニューロンに焦点を合わせ、その前後のモデルを体系的に分析する。
論文 参考訳(メタデータ) (2025-05-27T17:59:52Z) - Large Language Models Share Representations of Latent Grammatical Concepts Across Typologically Diverse Languages [15.203789021094982]
大規模言語モデル(LLM)では、複数の言語がどのように学習され、エンコードされているか?
Llama-3-8BとAya-23-8Bでスパースオートエンコーダを訓練し、抽象文法の概念が多くの言語で共有される特徴方向に符号化されることを実証する。
論文 参考訳(メタデータ) (2025-01-10T21:18:21Z) - Sharing Matters: Analysing Neurons Across Languages and Tasks in LLMs [70.3132264719438]
我々は,タスクや言語間でニューロンの活性化がどのように共有されるかを調べることで,研究ギャップを埋めることを目指している。
我々は、異なる言語にまたがる特定の入力に対する応答に基づいて、ニューロンを4つの異なるカテゴリに分類する。
分析の結果, (i) ニューロン共有のパターンはタスクや例の特徴に大きく影響され, (ii) ニューロン共有は言語類似性に完全には対応しない, (iii) 共有ニューロンは応答の生成において重要な役割を担っている。
論文 参考訳(メタデータ) (2024-06-13T16:04:11Z) - On the Multilingual Ability of Decoder-based Pre-trained Language Models: Finding and Controlling Language-Specific Neurons [37.32174349956148]
多言語デコーダを用いた言語モデル(PLM)のニューロンレベルの内部挙動の解析
言語固有のニューロンは、言語間でわずかに重なり(5%)、ユニークであることを示す。
推論中に各モデルにおける全ニューロンの1%未満をタンパし、少数の言語特異的ニューロンとのタンパリングがテキスト生成におけるターゲット言語発生の確率を劇的に変化させることを実証した。
論文 参考訳(メタデータ) (2024-04-03T03:37:22Z) - How do Large Language Models Handle Multilingualism? [81.15060972112563]
本研究では,大規模言語モデル(LLM)が多言語モデルをどのように扱うかを検討する。
LLMはまずクエリを理解し、タスク解決のために多言語入力を英語に変換する。
中間層では、英語を思考に用い、自己意識とフィードフォワード構造を持つ多言語知識を取り入れている。
論文 参考訳(メタデータ) (2024-02-29T02:55:26Z) - KBioXLM: A Knowledge-anchored Biomedical Multilingual Pretrained
Language Model [37.69464822182714]
ほとんどの生物医学的な事前訓練された言語モデルはモノリンガルであり、言語間要求の増大に対処できない。
本稿では,多言語事前学習型XLM-Rを知識アンコール手法を用いて生物医学領域に変換するKBioXLMというモデルを提案する。
論文 参考訳(メタデータ) (2023-11-20T07:02:35Z) - Causal Analysis of Syntactic Agreement Neurons in Multilingual Language
Models [28.036233760742125]
我々は多言語言語モデル(XGLMと多言語BERT)を様々な言語で因果的に探索する。
自己回帰型多言語言語モデルでは、言語間で大きなニューロンオーバーラップが見られるが、マスキング言語モデルではない。
論文 参考訳(メタデータ) (2022-10-25T20:43:36Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
本研究では,多言語事前学習プロセスのダイナミクスについて検討する。
我々は,XLM-Rプレトレーニング全体から抽出したチェックポイントを,一連の言語的タスクを用いて探索する。
分析の結果,より複雑なものよりも低レベルな言語スキルが得られ,早期に高い言語性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-05-24T03:35:00Z) - Same Neurons, Different Languages: Probing Morphosyntax in Multilingual
Pre-trained Models [84.86942006830772]
多言語事前学習モデルは文法に関する言語・ユニバーサルの抽象化を導出できると推測する。
43の言語と14のモルフォシンタクティックなカテゴリーで、最先端のニューロンレベルのプローブを用いて、初めて大規模な実験を行った。
論文 参考訳(メタデータ) (2022-05-04T12:22:31Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。