Controllable Feature Whitening for Hyperparameter-Free Bias Mitigation
- URL: http://arxiv.org/abs/2507.20284v1
- Date: Sun, 27 Jul 2025 14:01:30 GMT
- Title: Controllable Feature Whitening for Hyperparameter-Free Bias Mitigation
- Authors: Yooshin Cho, Hanbyel Cho, Janghyeon Lee, HyeongGwon Hong, Jaesung Ahn, Junmo Kim,
- Abstract summary: Deep neural networks are susceptible to learn spurious correlations present in datasets.<n>We quantify the linear correlation between the target and bias features by the covariance matrix, and eliminate it through the whitening module.<n>We show that our method outperforms existing approaches on four benchmark datasets.
- Score: 26.926297904648393
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As the use of artificial intelligence rapidly increases, the development of trustworthy artificial intelligence has become important. However, recent studies have shown that deep neural networks are susceptible to learn spurious correlations present in datasets. To improve the reliability, we propose a simple yet effective framework called controllable feature whitening. We quantify the linear correlation between the target and bias features by the covariance matrix, and eliminate it through the whitening module. Our results systemically demonstrate that removing the linear correlations between features fed into the last linear classifier significantly mitigates the bias, while avoiding the need to model intractable higher-order dependencies. A particular advantage of the proposed method is that it does not require regularization terms or adversarial learning, which often leads to unstable optimization in practice. Furthermore, we show that two fairness criteria, demographic parity and equalized odds, can be effectively handled by whitening with the re-weighted covariance matrix. Consequently, our method controls the trade-off between the utility and fairness of algorithms by adjusting the weighting coefficient. Finally, we validate that our method outperforms existing approaches on four benchmark datasets: Corrupted CIFAR-10, Biased FFHQ, WaterBirds, and Celeb-A.
Related papers
- Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update [60.414548453838506]
We study the generalized linear bandit (GLB) problem, a contextual multi-armed bandit framework that extends the classical linear model by incorporating a non-linear link function.<n>GLBs are widely applicable to real-world scenarios, but their non-linear nature introduces significant challenges in achieving both computational and statistical efficiency.<n>We propose a jointly efficient algorithm that attains a nearly optimal regret bound with $mathcalO(1)$ time and space complexities per round.
arXiv Detail & Related papers (2025-07-16T02:24:21Z) - Improving Group Robustness on Spurious Correlation via Evidential Alignment [26.544938760265136]
Deep neural networks often learn and rely on spurious correlations, i.e., superficial associations between non-causal features and the targets.<n>Existing methods typically mitigate this issue by using external group annotations or auxiliary deterministic models.<n>We propose Evidential Alignment, a novel framework that leverages uncertainty quantification to understand the behavior of the biased models.
arXiv Detail & Related papers (2025-06-12T22:47:21Z) - Re-evaluating Group Robustness via Adaptive Class-Specific Scaling [47.41034887474166]
Group distributionally robust optimization is a prominent algorithm used to mitigate spurious correlations and address dataset bias.<n>Existing approaches have reported improvements in robust accuracies but come at the cost of average accuracy due to inherent trade-offs.<n>We propose a class-specific scaling strategy, directly applicable to existing debiasing algorithms with no additional training.<n>We develop an instance-wise adaptive scaling technique to alleviate this trade-off, even leading to improvements in both robust and average accuracies.
arXiv Detail & Related papers (2024-12-19T16:01:51Z) - Understanding and Scaling Collaborative Filtering Optimization from the Perspective of Matrix Rank [48.02330727538905]
Collaborative Filtering (CF) methods dominate real-world recommender systems.
We study the properties of the embedding tables under different learning strategies.
We propose an efficient warm-start strategy that regularizes the stable rank of the user and item embeddings.
arXiv Detail & Related papers (2024-10-15T21:54:13Z) - Covariance-corrected Whitening Alleviates Network Degeneration on Imbalanced Classification [6.197116272789107]
Class imbalance is a critical issue in image classification that significantly affects the performance of deep recognition models.
We propose a novel framework called Whitening-Net to mitigate the degenerate solutions.
In scenarios with extreme class imbalance, the batch covariance statistic exhibits significant fluctuations, impeding the convergence of the whitening operation.
arXiv Detail & Related papers (2024-08-30T10:49:33Z) - Kernel-Whitening: Overcome Dataset Bias with Isotropic Sentence
Embedding [51.48582649050054]
We propose a representation normalization method which aims at disentangling the correlations between features of encoded sentences.
We also propose Kernel-Whitening, a Nystrom kernel approximation method to achieve more thorough debiasing on nonlinear spurious correlations.
Experiments show that Kernel-Whitening significantly improves the performance of BERT on out-of-distribution datasets while maintaining in-distribution accuracy.
arXiv Detail & Related papers (2022-10-14T05:56:38Z) - Self-supervised debiasing using low rank regularization [59.84695042540525]
Spurious correlations can cause strong biases in deep neural networks, impairing generalization ability.
We propose a self-supervised debiasing framework potentially compatible with unlabeled samples.
Remarkably, the proposed debiasing framework significantly improves the generalization performance of self-supervised learning baselines.
arXiv Detail & Related papers (2022-10-11T08:26:19Z) - Matrix Completion via Non-Convex Relaxation and Adaptive Correlation
Learning [90.8576971748142]
We develop a novel surrogate that can be optimized by closed-form solutions.
We exploit upperwise correlation for completion, and thus an adaptive correlation learning model.
arXiv Detail & Related papers (2022-03-04T08:50:50Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.