Re-evaluating Group Robustness via Adaptive Class-Specific Scaling
- URL: http://arxiv.org/abs/2412.15311v1
- Date: Thu, 19 Dec 2024 16:01:51 GMT
- Title: Re-evaluating Group Robustness via Adaptive Class-Specific Scaling
- Authors: Seonguk Seo, Bohyung Han,
- Abstract summary: Group distributionally robust optimization is a prominent algorithm used to mitigate spurious correlations and address dataset bias.
Existing approaches have reported improvements in robust accuracies but come at the cost of average accuracy due to inherent trade-offs.
We propose a class-specific scaling strategy, directly applicable to existing debiasing algorithms with no additional training.
We develop an instance-wise adaptive scaling technique to alleviate this trade-off, even leading to improvements in both robust and average accuracies.
- Score: 47.41034887474166
- License:
- Abstract: Group distributionally robust optimization, which aims to improve robust accuracies -- worst-group and unbiased accuracies -- is a prominent algorithm used to mitigate spurious correlations and address dataset bias. Although existing approaches have reported improvements in robust accuracies, these gains often come at the cost of average accuracy due to inherent trade-offs. To control this trade-off flexibly and efficiently, we propose a simple class-specific scaling strategy, directly applicable to existing debiasing algorithms with no additional training. We further develop an instance-wise adaptive scaling technique to alleviate this trade-off, even leading to improvements in both robust and average accuracies. Our approach reveals that a na\"ive ERM baseline matches or even outperforms the recent debiasing methods by simply adopting the class-specific scaling technique. Additionally, we introduce a novel unified metric that quantifies the trade-off between the two accuracies as a scalar value, allowing for a comprehensive evaluation of existing algorithms. By tackling the inherent trade-off and offering a performance landscape, our approach provides valuable insights into robust techniques beyond just robust accuracy. We validate the effectiveness of our framework through experiments across datasets in computer vision and natural language processing domains.
Related papers
- Navigating Towards Fairness with Data Selection [27.731128352096555]
We introduce a data selection method designed to efficiently and flexibly mitigate label bias.
Our approach utilizes a zero-shot predictor as a proxy model that simulates training on a clean holdout set.
Our modality-agnostic method has proven efficient and effective in handling label bias and improving fairness across diverse datasets in experimental evaluations.
arXiv Detail & Related papers (2024-12-15T06:11:05Z) - A constrained optimization approach to improve robustness of neural networks [1.2338729811609355]
We present a novel nonlinear programming-based approach to fine-tune pre-trained neural networks to improve robustness against adversarial attacks while maintaining accuracy on clean data.
arXiv Detail & Related papers (2024-09-18T18:37:14Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
We aim to learn decision policies that optimize an unbiased offline estimate of an online reward metric.
We propose a single framework built on their equivalence in learning scenarios.
Our framework enables us to characterize the variance-optimal unbiased estimator and provide a closed-form solution for it.
arXiv Detail & Related papers (2024-05-09T12:52:22Z) - Group Robust Classification Without Any Group Information [5.053622900542495]
This study contends that current bias-unsupervised approaches to group robustness continue to rely on group information to achieve optimal performance.
bias labels are still crucial for effective model selection, restricting the practicality of these methods in real-world scenarios.
We propose a revised methodology for training and validating debiased models in an entirely bias-unsupervised manner.
arXiv Detail & Related papers (2023-10-28T01:29:18Z) - Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
A performance-promising fair algorithm with better generalizability is needed.
This paper proposes a novel adaptive reweighing method to eliminate the impact of the distribution shifts between training and test data on model generalizability.
arXiv Detail & Related papers (2023-09-15T13:04:55Z) - An Operational Perspective to Fairness Interventions: Where and How to
Intervene [9.833760837977222]
We present a holistic framework for evaluating and contextualizing fairness interventions.
We demonstrate our framework with a case study on predictive parity.
We find predictive parity is difficult to achieve without using group data.
arXiv Detail & Related papers (2023-02-03T07:04:33Z) - Interpolation-based Contrastive Learning for Few-Label Semi-Supervised
Learning [43.51182049644767]
Semi-supervised learning (SSL) has long been proved to be an effective technique to construct powerful models with limited labels.
Regularization-based methods which force the perturbed samples to have similar predictions with the original ones have attracted much attention.
We propose a novel contrastive loss to guide the embedding of the learned network to change linearly between samples.
arXiv Detail & Related papers (2022-02-24T06:00:05Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Selective Pseudo-Labeling with Reinforcement Learning for
Semi-Supervised Domain Adaptation [116.48885692054724]
We propose a reinforcement learning based selective pseudo-labeling method for semi-supervised domain adaptation.
We develop a deep Q-learning model to select both accurate and representative pseudo-labeled instances.
Our proposed method is evaluated on several benchmark datasets for SSDA, and demonstrates superior performance to all the comparison methods.
arXiv Detail & Related papers (2020-12-07T03:37:38Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label.
Most existing methods elaborately designed as constrained optimizations that must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data.
This paper proposes a novel framework of classifier with flexibility on the model and optimization algorithm.
arXiv Detail & Related papers (2020-02-19T08:35:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.