論文の概要: Towards Generalized Parameter Tuning in Coherent Ising Machines: A Portfolio-Based Approach
- arxiv url: http://arxiv.org/abs/2507.20295v1
- Date: Sun, 27 Jul 2025 14:18:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:57.375606
- Title: Towards Generalized Parameter Tuning in Coherent Ising Machines: A Portfolio-Based Approach
- Title(参考訳): コヒーレントイジングマシンにおける一般化パラメータチューニングに向けて:ポートフォリオに基づくアプローチ
- Authors: Tatsuro Hanyu, Takahiro Katagiri, Daichi Mukunoki, Tetsuya Hoshino,
- Abstract要約: Coherent Ising Machines (CIM) は、最近最適化問題を解決するための有望な計算モデルとして注目されている。
モーメント付きカオス振幅制御(CACm)アルゴリズムを用いたCIMにおけるハイパーパラメータチューニングのためのアルゴリズムポートフォリオ手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coherent Ising Machines (CIMs) have recently gained attention as a promising computing model for solving combinatorial optimization problems. In particular, the Chaotic Amplitude Control (CAC) algorithm has demonstrated high solution quality, but its performance is highly sensitive to a large number of hyperparameters, making efficient tuning essential. In this study, we present an algorithm portfolio approach for hyperparameter tuning in CIMs employing Chaotic Amplitude Control with momentum (CACm) algorithm. Our method incorporates multiple search strategies, enabling flexible and effective adaptation to the characteristics of the hyperparameter space. Specifically, we propose two representative tuning methods, Method A and Method B. Method A optimizes each hyperparameter sequentially with a fixed total number of trials, while Method B prioritizes hyperparameters based on initial evaluations before applying Method A in order. Performance evaluations were conducted on the Supercomputer "Flow" at Nagoya University, using planted Wishart instances and Time to Solution (TTS) as the evaluation metric. Compared to the baseline performance with best-known hyperparameters, Method A achieved up to 1.47x improvement, and Method B achieved up to 1.65x improvement. These results demonstrate the effectiveness of the algorithm portfolio approach in enhancing the tuning process for CIMs.
- Abstract(参考訳): Coherent Ising Machines (CIM) は、最近、組合せ最適化問題を解決するための有望な計算モデルとして注目されている。
特に、カオス振幅制御(CAC)アルゴリズムは、高解法品質を示すが、その性能は多数のハイパーパラメータに非常に敏感であり、効率的なチューニングが不可欠である。
本研究では,モーメント付きカオス振幅制御(CACm)アルゴリズムを用いたCIMにおけるハイパーパラメータチューニングのためのアルゴリズムポートフォリオ手法を提案する。
提案手法は複数の探索戦略を組み込んで,ハイパーパラメータ空間の特性に柔軟かつ効果的な適応を可能にする。
具体的には,メソッドAとメソッドBの2つの代表的なチューニング手法を提案する。メソッドAは各ハイパーパラメータを一定数の試行数で逐次最適化し,メソッドBはメソッドAを適用する前に初期評価に基づいてハイパーパラメータを優先順位付けする。
名古屋大学におけるスーパーコンピュータ「フロー」の性能評価を,Wishart インスタンスと Time to Solution (TTS) を評価指標として行った。
最もよく知られているハイパーパラメータのベースライン性能と比較すると、メソッドAは最大1.47倍、メソッドBは最大1.65倍の改善を達成した。
これらの結果は、CIMのチューニングプロセスを強化するアルゴリズムポートフォリオアプローチの有効性を示す。
関連論文リスト
- A Gradient Meta-Learning Joint Optimization for Beamforming and Antenna Position in Pinching-Antenna Systems [63.213207442368294]
マルチ導波路ピンチアンテナシステムの新しい最適化設計について検討する。
提案したGML-JOアルゴリズムは,既存の最適化手法と比較して,様々な選択や性能に頑健である。
論文 参考訳(メタデータ) (2025-06-14T17:35:27Z) - Adam assisted Fully informed Particle Swarm Optimzation ( Adam-FIPSO ) based Parameter Prediction for the Quantum Approximate Optimization Algorithm (QAOA) [1.024113475677323]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm, QAOA)は、マックス・カット問題などの最適化問題の解法として用いられる顕著な変分アルゴリズムである。
QAOAの重要な課題は、高品質なソリューションにつながる適切なパラメータを効率的に特定することである。
論文 参考訳(メタデータ) (2025-06-07T13:14:41Z) - Hyperparameter Adaptive Search for Surrogate Optimization: A
Self-Adjusting Approach [1.6317061277457001]
サーロゲート最適化(SO)アルゴリズムは高価なブラックボックス関数の最適化を約束している。
提案手法は,各問題とSOアプローチに特有の最も影響力のあるハイパーパラメータを同定し,修正する。
実験により,様々なSOアルゴリズムの性能向上におけるHASSOの有効性が示された。
論文 参考訳(メタデータ) (2023-10-12T01:26:05Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
本稿では,機械学習アルゴリズムの評価における不確実性を考慮した多目的ハイパーパラメータ最適化の結果について述べる。
木構造型Parzen Estimator(TPE)のサンプリング戦略と、ガウス過程回帰(GPR)と異種雑音の訓練後に得られたメタモデルを組み合わせる。
3つの解析的テスト関数と3つのML問題の実験結果は、多目的TPEとGPRよりも改善したことを示している。
論文 参考訳(メタデータ) (2022-09-09T14:58:43Z) - A Globally Convergent Gradient-based Bilevel Hyperparameter Optimization
Method [0.0]
ハイパーパラメータ最適化問題の解法として,勾配に基づく双レベル法を提案する。
提案手法は, より低い計算量に収束し, テストセットをより良く一般化するモデルに導かれることを示す。
論文 参考訳(メタデータ) (2022-08-25T14:25:16Z) - Meta-Learning Digitized-Counterdiabatic Quantum Optimization [3.0638256603183054]
本稿では,リカレントニューラルネットワークを用いたメタラーニング手法を用いて,変分最適化に適した初期パラメータを求める問題に取り組む。
我々は、最近提案されたディジタル化対数量子近似アルゴリズム(DC-QAOA)を用いて、この手法について検討する。
メタラーニングとDC-QAOAを組み合わせることで、MaxCut問題やSherrington-Kirkpatrickモデルなど、異なるモデルに対する最適な初期パラメータを見つけることができる。
論文 参考訳(メタデータ) (2022-06-20T18:57:50Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
本稿では,多目的HPOアルゴリズムに関する2014年から2020年にかけての文献を体系的に調査する。
メタヒューリスティック・ベース・アルゴリズムとメタモデル・ベース・アルゴリズム,および両者を混合したアプローチを区別する。
また,多目的HPO法と今後の研究方向性を比較するための品質指標についても論じる。
論文 参考訳(メタデータ) (2021-11-23T10:22:30Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
ゼロ階超勾配(HOZOG)を用いた新しいハイパーパラメータ最適化法を提案する。
具体的には、A型制約最適化問題として、まずハイパーパラメータ最適化を定式化する。
次に、平均ゼロ階超勾配を用いてハイパーパラメータを更新する。
論文 参考訳(メタデータ) (2021-02-17T21:03:05Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - On Hyper-parameter Tuning for Stochastic Optimization Algorithms [28.88646928299302]
本稿では,強化学習に基づく最適化アルゴリズムのハイパーパラメータをチューニングするための,最初のアルゴリズムフレームワークを提案する。
提案フレームワークはアルゴリズムにおけるハイパーパラメータチューニングの標準ツールとして利用できる。
論文 参考訳(メタデータ) (2020-03-04T12:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。