Towards Generalized Parameter Tuning in Coherent Ising Machines: A Portfolio-Based Approach
- URL: http://arxiv.org/abs/2507.20295v1
- Date: Sun, 27 Jul 2025 14:18:54 GMT
- Title: Towards Generalized Parameter Tuning in Coherent Ising Machines: A Portfolio-Based Approach
- Authors: Tatsuro Hanyu, Takahiro Katagiri, Daichi Mukunoki, Tetsuya Hoshino,
- Abstract summary: Coherent Ising Machines (CIMs) have recently gained attention as a promising computing model for solving optimization problems.<n>We present an algorithm portfolio approach for hyperparameter tuning in CIMs employing Chaotic Amplitude Control with momentum (CACm) algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coherent Ising Machines (CIMs) have recently gained attention as a promising computing model for solving combinatorial optimization problems. In particular, the Chaotic Amplitude Control (CAC) algorithm has demonstrated high solution quality, but its performance is highly sensitive to a large number of hyperparameters, making efficient tuning essential. In this study, we present an algorithm portfolio approach for hyperparameter tuning in CIMs employing Chaotic Amplitude Control with momentum (CACm) algorithm. Our method incorporates multiple search strategies, enabling flexible and effective adaptation to the characteristics of the hyperparameter space. Specifically, we propose two representative tuning methods, Method A and Method B. Method A optimizes each hyperparameter sequentially with a fixed total number of trials, while Method B prioritizes hyperparameters based on initial evaluations before applying Method A in order. Performance evaluations were conducted on the Supercomputer "Flow" at Nagoya University, using planted Wishart instances and Time to Solution (TTS) as the evaluation metric. Compared to the baseline performance with best-known hyperparameters, Method A achieved up to 1.47x improvement, and Method B achieved up to 1.65x improvement. These results demonstrate the effectiveness of the algorithm portfolio approach in enhancing the tuning process for CIMs.
Related papers
- A Gradient Meta-Learning Joint Optimization for Beamforming and Antenna Position in Pinching-Antenna Systems [63.213207442368294]
We consider a novel optimization design for multi-waveguide pinching-antenna systems.<n>The proposed GML-JO algorithm is robust to different choices and better performance compared with the existing optimization methods.
arXiv Detail & Related papers (2025-06-14T17:35:27Z) - Adam assisted Fully informed Particle Swarm Optimzation ( Adam-FIPSO ) based Parameter Prediction for the Quantum Approximate Optimization Algorithm (QAOA) [1.024113475677323]
The Quantum Approximate Optimization Algorithm (QAOA) is a prominent variational algorithm used for solving optimization problems such as the Max-Cut problem.<n>A key challenge in QAOA lies in efficiently identifying suitable parameters that lead to high-quality solutions.
arXiv Detail & Related papers (2025-06-07T13:14:41Z) - Hyperparameter Adaptive Search for Surrogate Optimization: A
Self-Adjusting Approach [1.6317061277457001]
Surrogate optimization (SO) algorithms have shown promise for optimizing expensive black-box functions.
Our approach identifies and modifies the most influential hyper parameters specific to each problem and SO approach.
Experimental results demonstrate the effectiveness of HASSO in enhancing the performance of various SO algorithms.
arXiv Detail & Related papers (2023-10-12T01:26:05Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
This paper presents results on multi-objective hyperparameter optimization with uncertainty on the evaluation of Machine Learning algorithms.
We combine the sampling strategy of Tree-structured Parzen Estimators (TPE) with the metamodel obtained after training a Gaussian Process Regression (GPR) with heterogeneous noise.
Experimental results on three analytical test functions and three ML problems show the improvement over multi-objective TPE and GPR.
arXiv Detail & Related papers (2022-09-09T14:58:43Z) - A Globally Convergent Gradient-based Bilevel Hyperparameter Optimization
Method [0.0]
We propose a gradient-based bilevel method for solving the hyperparameter optimization problem.
We show that the proposed method converges with lower computation and leads to models that generalize better on the testing set.
arXiv Detail & Related papers (2022-08-25T14:25:16Z) - Meta-Learning Digitized-Counterdiabatic Quantum Optimization [3.0638256603183054]
We tackle the problem of finding suitable initial parameters for variational optimization by employing a meta-learning technique using recurrent neural networks.
We investigate this technique with the recently proposed digitized-counterdiabatic quantum approximate optimization algorithm (DC-QAOA)
The combination of meta learning and DC-QAOA enables us to find optimal initial parameters for different models, such as MaxCut problem and the Sherrington-Kirkpatrick model.
arXiv Detail & Related papers (2022-06-20T18:57:50Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms.
We distinguish between metaheuristic-based algorithms, metamodel-based algorithms, and approaches using a mixture of both.
We also discuss the quality metrics used to compare multi-objective HPO procedures and present future research directions.
arXiv Detail & Related papers (2021-11-23T10:22:30Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
We propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)
Specifically, we first formulate hyperparameter optimization as an A-based constrained optimization problem.
Then, we use the average zeroth-order hyper-gradients to update hyper parameters.
arXiv Detail & Related papers (2021-02-17T21:03:05Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - On Hyper-parameter Tuning for Stochastic Optimization Algorithms [28.88646928299302]
This paper proposes the first-ever algorithmic framework for tuning hyper-parameters of optimization algorithm based on reinforcement learning.
The proposed framework can be used as a standard tool for hyper-parameter tuning in algorithms.
arXiv Detail & Related papers (2020-03-04T12:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.