論文の概要: Enhancing Hallucination Detection via Future Context
- arxiv url: http://arxiv.org/abs/2507.20546v1
- Date: Mon, 28 Jul 2025 06:13:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:57.881745
- Title: Enhancing Hallucination Detection via Future Context
- Title(参考訳): 将来の文脈による幻覚検出の強化
- Authors: Joosung Lee, Cheonbok Park, Hwiyeol Jo, Jeonghoon Kim, Joonsuk Park, Kang Min Yoo,
- Abstract要約: ブラックボックスジェネレータのための幻覚検出フレームワークを開発した。
幻覚が一度導入されると持続する傾向にあるという観察に動機付けられ、我々は将来の文脈をサンプリングする。
サンプル化された将来の文脈は幻覚検出のための貴重な手がかりを提供し、様々なサンプリングベースの手法と効果的に統合することができる。
- 参考スコア(独自算出の注目度): 24.949380108597197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are widely used to generate plausible text on online platforms, without revealing the generation process. As users increasingly encounter such black-box outputs, detecting hallucinations has become a critical challenge. To address this challenge, we focus on developing a hallucination detection framework for black-box generators. Motivated by the observation that hallucinations, once introduced, tend to persist, we sample future contexts. The sampled future contexts provide valuable clues for hallucination detection and can be effectively integrated with various sampling-based methods. We extensively demonstrate performance improvements across multiple methods using our proposed sampling approach.
- Abstract(参考訳): 大規模言語モデル(LLM)は、生成プロセスを明らかにすることなく、オンラインプラットフォーム上で可塑性テキストを生成するために広く使用されている。
ユーザーがこのようなブラックボックス出力に遭遇するにつれて、幻覚を検出することが重要な課題となっている。
この課題に対処するために、ブラックボックスジェネレータのための幻覚検出フレームワークの開発に焦点をあてる。
幻覚が一度導入されると持続する傾向にあるという観察に動機付けられ、我々は将来の文脈をサンプリングする。
サンプル化された将来の文脈は幻覚検出のための貴重な手がかりを提供し、様々なサンプリングベースの手法と効果的に統合することができる。
提案手法を用いて,複数の手法にまたがる性能改善を広範囲に示す。
関連論文リスト
- A Survey of Multimodal Hallucination Evaluation and Detection [52.03164192840023]
MLLM(Multi-modal Large Language Models)は、視覚情報とテキスト情報を統合するための強力なパラダイムとして登場した。
これらのモデルはしばしば幻覚に悩まされ、もっともらしいように見えるコンテンツを生成するが、入力内容や確立された世界的知識と矛盾する。
本調査では,イメージ・トゥ・テキスト(I2T)およびテキスト・トゥ・イメージ(T2I)生成タスクを対象とした幻覚評価ベンチマークと検出方法の詳細なレビューを行う。
論文 参考訳(メタデータ) (2025-07-25T07:22:42Z) - Learning Auxiliary Tasks Improves Reference-Free Hallucination Detection in Open-Domain Long-Form Generation [78.78421340836915]
オープンドメイン長文応答における参照なし幻覚検出を系統的に検討する。
その結果,内的状態は事実と幻覚的内容とを確実に区別するには不十分であることが判明した。
RATE-FTと呼ばれる新しいパラダイムを導入し、モデルが幻覚検出のメインタスクと共同で学習するための補助的なタスクで微調整を強化する。
論文 参考訳(メタデータ) (2025-05-18T07:10:03Z) - Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling [67.14942827452161]
VLM(Vision-Language Models)は視覚的理解に優れ、視覚幻覚に悩まされることが多い。
本研究では,幻覚を意識したトレーニングとオンザフライの自己検証を統合した統合フレームワークREVERSEを紹介する。
論文 参考訳(メタデータ) (2025-04-17T17:59:22Z) - Robust Hallucination Detection in LLMs via Adaptive Token Selection [25.21763722332831]
大きな言語モデル(LLM)の幻覚は、より広範なデプロイメントを妨げる重要な安全性上の懸念を引き起こす。
本研究では,適応的選択とクリティカルトークンの学習を通じて,幻覚の堅牢な検出を可能にする新しいアプローチであるHaMIを提案する。
本研究では,ハロシン化検出タスクの革新的な定式化により,このロバスト性を実現する。
論文 参考訳(メタデータ) (2025-04-10T15:39:10Z) - Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning [151.4060202671114]
マルチモーダル大規模言語モデル(MLLM)は、視覚言語タスクを前進させる前例のない能力を示した。
本稿では,MLLMにおける幻覚に対処するためのボトムアップ推論フレームワークを提案する。
本フレームワークは、認識レベル情報と認知レベルコモンセンス知識を検証・統合することにより、視覚とテキストの両方の入力における潜在的な問題に体系的に対処する。
論文 参考訳(メタデータ) (2024-12-15T09:10:46Z) - Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization [123.54980913741828]
大規模ビジュアル言語モデル(LVLM)は、マルチモーダルデータの理解において、例外的な能力を示した。
彼らは必然的に幻覚に悩まされ、生成されたテキストと対応するイメージを切断する。
現在の視覚的コントラスト復号法のほとんどは、視覚的不確実性情報を導入して幻覚を緩和しようとするものである。
しかし、彼らは幻覚トークンを正確に誘導するのに苦労し、幻覚を緩和する効果を著しく制限した。
論文 参考訳(メタデータ) (2024-05-24T08:46:31Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [40.930238150365795]
我々は,LVLM(Large Vision Language Models)における幻覚の検出と緩和について,きめ細かいAIフィードバックを用いて提案する。
プロプライエタリモデルによる小型幻覚アノテーションデータセットを生成する。
そこで本研究では,幻覚緩和モデルの訓練のための選好データセットを自動構築する検出テーマ書き換えパイプラインを提案する。
論文 参考訳(メタデータ) (2024-04-22T14:46:10Z) - Unified Hallucination Detection for Multimodal Large Language Models [44.333451078750954]
マルチモーダル大言語モデル(MLLM)は幻覚の重要な問題に悩まされている。
本稿では,幻覚検出手法の進歩を評価するために,メタ評価ベンチマークであるMHaluBenchを提案する。
我々は,幻覚の発生を確実に検証するために,一連の補助ツールを活用する,新しい統合型マルチモーダル幻覚検出フレームワークUNIHDを公表した。
論文 参考訳(メタデータ) (2024-02-05T16:56:11Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z) - HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large
Language Models [146.87696738011712]
大型言語モデル(LLM)は幻覚を生成する傾向があり、すなわち、ソースと矛盾したり、事実の知識によって検証できないコンテンツである。
言語モデル(HaluEval)のための幻覚評価ベンチマーク(Halucination Evaluation benchmark)を導入する。
論文 参考訳(メタデータ) (2023-05-19T15:36:27Z) - Diving Deep into Modes of Fact Hallucinations in Dialogue Systems [2.8360662552057323]
知識グラフ(KG)に基づく会話は、しばしば大きな事前訓練されたモデルを使用し、通常、事実幻覚に悩まされる。
我々は、応答を生成しながら、誤った内容を制御する微妙な信号を提供するエンティティレベルの幻覚検出システムを構築した。
論文 参考訳(メタデータ) (2023-01-11T13:08:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。