Unlearning of Knowledge Graph Embedding via Preference Optimization
- URL: http://arxiv.org/abs/2507.20566v1
- Date: Mon, 28 Jul 2025 07:03:04 GMT
- Title: Unlearning of Knowledge Graph Embedding via Preference Optimization
- Authors: Jiajun Liu, Wenjun Ke, Peng Wang, Yao He, Ziyu Shang, Guozheng Li, Zijie Xu, Ke Ji,
- Abstract summary: Existing knowledge graphs (KGs) inevitably contain outdated or erroneous knowledge that needs to be removed.<n>We propose GraphDPO, a novel approximate unlearning framework based on direct preference optimization (DPO)<n>Experiments show that GraphDPO outperforms state-of-the-art baselines by up to 10.1% in MRR_Avg and 14.0% in MRR_F1.
- Score: 10.933615997032698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing knowledge graphs (KGs) inevitably contain outdated or erroneous knowledge that needs to be removed from knowledge graph embedding (KGE) models. To address this challenge, knowledge unlearning can be applied to eliminate specific information while preserving the integrity of the remaining knowledge in KGs. Existing unlearning methods can generally be categorized into exact unlearning and approximate unlearning. However, exact unlearning requires high training costs while approximate unlearning faces two issues when applied to KGs due to the inherent connectivity of triples: (1) It fails to fully remove targeted information, as forgetting triples can still be inferred from remaining ones. (2) It focuses on local data for specific removal, which weakens the remaining knowledge in the forgetting boundary. To address these issues, we propose GraphDPO, a novel approximate unlearning framework based on direct preference optimization (DPO). Firstly, to effectively remove forgetting triples, we reframe unlearning as a preference optimization problem, where the model is trained by DPO to prefer reconstructed alternatives over the original forgetting triples. This formulation penalizes reliance on forgettable knowledge, mitigating incomplete forgetting caused by KG connectivity. Moreover, we introduce an out-boundary sampling strategy to construct preference pairs with minimal semantic overlap, weakening the connection between forgetting and retained knowledge. Secondly, to preserve boundary knowledge, we introduce a boundary recall mechanism that replays and distills relevant information both within and across time steps. We construct eight unlearning datasets across four popular KGs with varying unlearning rates. Experiments show that GraphDPO outperforms state-of-the-art baselines by up to 10.1% in MRR_Avg and 14.0% in MRR_F1.
Related papers
- BLUR: A Bi-Level Optimization Approach for LLM Unlearning [105.98410883830596]
We argue that it is important to model the hierarchical structure of the unlearning problem.<n>We propose a novel algorithm, termed Bi-Level UnleaRning (textttBLUR), which delivers superior performance.
arXiv Detail & Related papers (2025-06-09T19:23:05Z) - Erasing Without Remembering: Implicit Knowledge Forgetting in Large Language Models [70.78205685001168]
We investigate knowledge forgetting in large language models with a focus on its generalisation.<n> UGBench is the first benchmark specifically designed to assess the unlearning of in-scope implicit knowledge.<n>We propose PerMU, a novel probability-based unlearning paradigm.
arXiv Detail & Related papers (2025-02-27T11:03:33Z) - Unlearnable 3D Point Clouds: Class-wise Transformation Is All You Need [24.18942067770636]
Unlearnable strategies have been proposed to prevent unauthorized users from training on the 2D image data.
We propose the first integral unlearnable framework for 3D point clouds including two processes.
Both theoretical and empirical results demonstrate the effectiveness of our proposed unlearnable framework.
arXiv Detail & Related papers (2024-10-04T17:49:32Z) - Towards Robust and Parameter-Efficient Knowledge Unlearning for LLMs [25.91643745340183]
Large Language Models (LLMs) have demonstrated strong reasoning and memorization capabilities via pretraining on massive textual corpora.<n>This poses risk of privacy and copyright violations, highlighting the need for efficient machine unlearning methods.<n>We propose Low-rank Knowledge Unlearning (LoKU), a novel framework that enables robust and efficient unlearning for LLMs.
arXiv Detail & Related papers (2024-08-13T04:18:32Z) - Communication Efficient and Provable Federated Unlearning [43.178460522012934]
We study federated unlearning, a novel problem to eliminate the impact of specific clients or data points on the global model learned via federated learning (FL)
This problem is driven by the right to be forgotten and the privacy challenges in FL.
We introduce a new framework for exact federated unlearning that meets two essential criteria: textitcommunication efficiency and textitexact unlearning provability.
arXiv Detail & Related papers (2024-01-19T20:35:02Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - To Copy Rather Than Memorize: A Vertical Learning Paradigm for Knowledge
Graph Completion [35.05965140700747]
We extend embedding models by allowing to explicitly copy target information from related factual triples for more accurate prediction.
We also propose a novel relative distance based negative sampling technique (ReD) for more effective optimization.
arXiv Detail & Related papers (2023-05-23T14:53:20Z) - Repurposing Knowledge Graph Embeddings for Triple Representation via
Weak Supervision [77.34726150561087]
Current methods learn triple embeddings from scratch without utilizing entity and predicate embeddings from pre-trained models.
We develop a method for automatically sampling triples from a knowledge graph and estimating their pairwise similarities from pre-trained embedding models.
These pairwise similarity scores are then fed to a Siamese-like neural architecture to fine-tune triple representations.
arXiv Detail & Related papers (2022-08-22T14:07:08Z) - Few-Shot Non-Parametric Learning with Deep Latent Variable Model [50.746273235463754]
We propose Non-Parametric learning by Compression with Latent Variables (NPC-LV)
NPC-LV is a learning framework for any dataset with abundant unlabeled data but very few labeled ones.
We show that NPC-LV outperforms supervised methods on all three datasets on image classification in low data regime.
arXiv Detail & Related papers (2022-06-23T09:35:03Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.