LSFDNet: A Single-Stage Fusion and Detection Network for Ships Using SWIR and LWIR
- URL: http://arxiv.org/abs/2507.20574v1
- Date: Mon, 28 Jul 2025 07:13:55 GMT
- Title: LSFDNet: A Single-Stage Fusion and Detection Network for Ships Using SWIR and LWIR
- Authors: Yanyin Guo, Runxuan An, Junwei Li, Zhiyuan Zhang,
- Abstract summary: Short-wave infrared (SWIR) and long-wave infrared (LWIR) are used in ship detection.<n>We propose a novel single-stage image fusion detection algorithm called LSFDNet.<n>This algorithm leverages feature interaction between the image fusion and object detection subtask networks.<n>We validated the superiority of our proposed single-stage fusion detection algorithm on two datasets.
- Score: 16.16208006025223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional ship detection methods primarily rely on single-modal approaches, such as visible or infrared images, which limit their application in complex scenarios involving varying lighting conditions and heavy fog. To address this issue, we explore the advantages of short-wave infrared (SWIR) and long-wave infrared (LWIR) in ship detection and propose a novel single-stage image fusion detection algorithm called LSFDNet. This algorithm leverages feature interaction between the image fusion and object detection subtask networks, achieving remarkable detection performance and generating visually impressive fused images. To further improve the saliency of objects in the fused images and improve the performance of the downstream detection task, we introduce the Multi-Level Cross-Fusion (MLCF) module. This module combines object-sensitive fused features from the detection task and aggregates features across multiple modalities, scales, and tasks to obtain more semantically rich fused features. Moreover, we utilize the position prior from the detection task in the Object Enhancement (OE) loss function, further increasing the retention of object semantics in the fused images. The detection task also utilizes preliminary fused features from the fusion task to complement SWIR and LWIR features, thereby enhancing detection performance. Additionally, we have established a Nearshore Ship Long-Short Wave Registration (NSLSR) dataset to train effective SWIR and LWIR image fusion and detection networks, bridging a gap in this field. We validated the superiority of our proposed single-stage fusion detection algorithm on two datasets. The source code and dataset are available at https://github.com/Yanyin-Guo/LSFDNet
Related papers
- DREB-Net: Dual-stream Restoration Embedding Blur-feature Fusion Network for High-mobility UAV Object Detection [38.882935730384965]
DREB-Net is an innovative object detection algorithm specifically designed for blurry images.
It addresses the particularities of blurry image object detection problem by incorporating a Blurry image Restoration Auxiliary Branch.
Experimental results indicate that DREB-Net can still effectively perform object detection tasks under motion blur in captured images.
arXiv Detail & Related papers (2024-10-23T12:32:20Z) - Removal then Selection: A Coarse-to-Fine Fusion Perspective for RGB-Infrared Object Detection [20.12812979315803]
Object detection utilizing both visible (RGB) and thermal infrared (IR) imagery has garnered extensive attention.
Most existing multi-modal object detection methods directly input the RGB and IR images into deep neural networks.
We propose a novel coarse-to-fine perspective to purify and fuse features from both modalities.
arXiv Detail & Related papers (2024-01-19T14:49:42Z) - Multimodal Transformer Using Cross-Channel attention for Object Detection in Remote Sensing Images [1.662438436885552]
Multi-modal fusion has been determined to enhance the accuracy by fusing data from multiple modalities.
We propose a novel multi-modal fusion strategy for mapping relationships between different channels at the early stage.
By addressing fusion in the early stage, as opposed to mid or late-stage methods, our method achieves competitive and even superior performance compared to existing techniques.
arXiv Detail & Related papers (2023-10-21T00:56:11Z) - An Interactively Reinforced Paradigm for Joint Infrared-Visible Image
Fusion and Saliency Object Detection [59.02821429555375]
This research focuses on the discovery and localization of hidden objects in the wild and serves unmanned systems.
Through empirical analysis, infrared and visible image fusion (IVIF) enables hard-to-find objects apparent.
multimodal salient object detection (SOD) accurately delineates the precise spatial location of objects within the picture.
arXiv Detail & Related papers (2023-05-17T06:48:35Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
We propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network.
We show that CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2022-11-26T02:40:28Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z) - A Single Stream Network for Robust and Real-time RGB-D Salient Object
Detection [89.88222217065858]
We design a single stream network to use the depth map to guide early fusion and middle fusion between RGB and depth.
This model is 55.5% lighter than the current lightest model and runs at a real-time speed of 32 FPS when processing a $384 times 384$ image.
arXiv Detail & Related papers (2020-07-14T04:40:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.