DREB-Net: Dual-stream Restoration Embedding Blur-feature Fusion Network for High-mobility UAV Object Detection
- URL: http://arxiv.org/abs/2410.17822v1
- Date: Wed, 23 Oct 2024 12:32:20 GMT
- Title: DREB-Net: Dual-stream Restoration Embedding Blur-feature Fusion Network for High-mobility UAV Object Detection
- Authors: Qingpeng Li, Yuxin Zhang, Leyuan Fang, Yuhan Kang, Shutao Li, Xiao Xiang Zhu,
- Abstract summary: DREB-Net is an innovative object detection algorithm specifically designed for blurry images.
It addresses the particularities of blurry image object detection problem by incorporating a Blurry image Restoration Auxiliary Branch.
Experimental results indicate that DREB-Net can still effectively perform object detection tasks under motion blur in captured images.
- Score: 38.882935730384965
- License:
- Abstract: Object detection algorithms are pivotal components of unmanned aerial vehicle (UAV) imaging systems, extensively employed in complex fields. However, images captured by high-mobility UAVs often suffer from motion blur cases, which significantly impedes the performance of advanced object detection algorithms. To address these challenges, we propose an innovative object detection algorithm specifically designed for blurry images, named DREB-Net (Dual-stream Restoration Embedding Blur-feature Fusion Network). First, DREB-Net addresses the particularities of blurry image object detection problem by incorporating a Blurry image Restoration Auxiliary Branch (BRAB) during the training phase. Second, it fuses the extracted shallow features via Multi-level Attention-Guided Feature Fusion (MAGFF) module, to extract richer features. Here, the MAGFF module comprises local attention modules and global attention modules, which assign different weights to the branches. Then, during the inference phase, the deep feature extraction of the BRAB can be removed to reduce computational complexity and improve detection speed. In loss function, a combined loss of MSE and SSIM is added to the BRAB to restore blurry images. Finally, DREB-Net introduces Fast Fourier Transform in the early stages of feature extraction, via a Learnable Frequency domain Amplitude Modulation Module (LFAMM), to adjust feature amplitude and enhance feature processing capability. Experimental results indicate that DREB-Net can still effectively perform object detection tasks under motion blur in captured images, showcasing excellent performance and broad application prospects. Our source code will be available at https://github.com/EEIC-Lab/DREB-Net.git.
Related papers
- D-YOLO a robust framework for object detection in adverse weather conditions [0.0]
Adverse weather conditions including haze, snow and rain lead to decline in image qualities, which often causes a decline in performance for deep-learning based detection networks.
To better integrate image restoration and object detection tasks, we designed a double-route network with an attention feature fusion module.
We also proposed a subnetwork to provide haze-free features to the detection network. Specifically, our D-YOLO improves the performance of the detection network by minimizing the distance between the clear feature extraction subnetwork and detection network.
arXiv Detail & Related papers (2024-03-14T09:57:15Z) - FriendNet: Detection-Friendly Dehazing Network [24.372610892854283]
We propose an effective architecture that bridges image dehazing and object detection together via guidance information and task-driven learning.
FriendNet aims to deliver both high-quality perception and high detection capacity.
arXiv Detail & Related papers (2024-03-07T12:19:04Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Adaptive Rotated Convolution for Rotated Object Detection [96.94590550217718]
We present Adaptive Rotated Convolution (ARC) module to handle rotated object detection problem.
In our ARC module, the convolution kernels rotate adaptively to extract object features with varying orientations in different images.
The proposed approach achieves state-of-the-art performance on the DOTA dataset with 81.77% mAP.
arXiv Detail & Related papers (2023-03-14T11:53:12Z) - Efficient Image Super-Resolution with Feature Interaction Weighted Hybrid Network [101.53907377000445]
Lightweight image super-resolution aims to reconstruct high-resolution images from low-resolution images using low computational costs.
Existing methods result in the loss of middle-layer features due to activation functions.
We propose a Feature Interaction Weighted Hybrid Network (FIWHN) to minimize the impact of intermediate feature loss on reconstruction quality.
arXiv Detail & Related papers (2022-12-29T05:57:29Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
We propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network.
We show that CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2022-11-26T02:40:28Z) - Fast Fourier Convolution Based Remote Sensor Image Object Detection for
Earth Observation [0.0]
We propose a Frequency-aware Feature Pyramid Framework (FFPF) for remote sensing object detection.
F-ResNet is proposed to perceive the spectral context information by plugging the frequency domain convolution into each stage of the backbone.
The BSFPN is designed to use a bilateral sampling strategy and skipping connection to better model the association of object features at different scales.
arXiv Detail & Related papers (2022-09-01T15:50:58Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
In this paper, we discuss the role of discriminative features in object detection.
We then propose a Critical Feature Capturing Network (CFC-Net) to improve detection accuracy.
We show that our method achieves superior detection performance compared with many state-of-the-art approaches.
arXiv Detail & Related papers (2021-01-18T02:31:09Z) - Feature Flow: In-network Feature Flow Estimation for Video Object
Detection [56.80974623192569]
Optical flow is widely used in computer vision tasks to provide pixel-level motion information.
A common approach is to:forward optical flow to a neural network and fine-tune this network on the task dataset.
We propose a novel network (IFF-Net) with an textbfIn-network textbfFeature textbfFlow estimation module for video object detection.
arXiv Detail & Related papers (2020-09-21T07:55:50Z) - Small-Object Detection in Remote Sensing Images with End-to-End
Edge-Enhanced GAN and Object Detector Network [9.135036713000513]
A generative adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) shows remarkable image enhancement performance.
We propose a new edge-enhanced super-resolution GAN (EESRGAN) to improve the image quality of remote sensing images.
arXiv Detail & Related papers (2020-03-20T03:07:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.