M-Net: MRI Brain Tumor Sequential Segmentation Network via Mesh-Cast
- URL: http://arxiv.org/abs/2507.20582v1
- Date: Mon, 28 Jul 2025 07:33:29 GMT
- Title: M-Net: MRI Brain Tumor Sequential Segmentation Network via Mesh-Cast
- Authors: Jiacheng Lu, Hui Ding, Shiyu Zhang, Guoping Huo,
- Abstract summary: M-Net is a flexible framework specifically designed for sequential image segmentation.<n>M-Net introduces the novel Mesh-Cast mechanism, which seamlessly integrates arbitrary sequential models into the processing of both channel and temporal information.
- Score: 2.90376151605663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: MRI tumor segmentation remains a critical challenge in medical imaging, where volumetric analysis faces unique computational demands due to the complexity of 3D data. The spatially sequential arrangement of adjacent MRI slices provides valuable information that enhances segmentation continuity and accuracy, yet this characteristic remains underutilized in many existing models. The spatial correlations between adjacent MRI slices can be regarded as "temporal-like" data, similar to frame sequences in video segmentation tasks. To bridge this gap, we propose M-Net, a flexible framework specifically designed for sequential image segmentation. M-Net introduces the novel Mesh-Cast mechanism, which seamlessly integrates arbitrary sequential models into the processing of both channel and temporal information, thereby systematically capturing the inherent "temporal-like" spatial correlations between MRI slices. Additionally, we define an MRI sequential input pattern and design a Two-Phase Sequential (TPS) training strategy, which first focuses on learning common patterns across sequences before refining slice-specific feature extraction. This approach leverages temporal modeling techniques to preserve volumetric contextual information while avoiding the high computational cost of full 3D convolutions, thereby enhancing the generalizability and robustness of M-Net in sequential segmentation tasks. Experiments on the BraTS2019 and BraTS2023 datasets demonstrate that M-Net outperforms existing methods across all key metrics, establishing itself as a robust solution for temporally-aware MRI tumor segmentation.
Related papers
- RL-U$^2$Net: A Dual-Branch UNet with Reinforcement Learning-Assisted Multimodal Feature Fusion for Accurate 3D Whole-Heart Segmentation [0.624829068285122]
We propose a dual-branch U-Net architecture enhanced by reinforcement learning for feature alignment.<n>The model employs a dual-branch U-shaped network to process CT and MRI patches in parallel, and introduces a novel RL-XAlign module.<n> Experimental results on the publicly available MM-WHS 2017 dataset demonstrate that the proposed RL-U$2$Net outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2025-08-04T16:12:06Z) - ReCoGNet: Recurrent Context-Guided Network for 3D MRI Prostate Segmentation [11.248082139905865]
We propose a hybrid architecture that models MRI sequences as annotated data.<n>Our method uses a deep, preserving pretrained DeepVLab3 backbone to extract high-level semantic features from each MRI slice and a recurrent convolutional head, built with ConvLSTM layers, to integrate information across slices.<n>Compared to state-of-the-art 2D and 3D segmentation models, our approach demonstrates superior performance in terms of precision, recall, Intersection over Union (IoU), Dice Similarity Coefficient (DSC) and robustness.
arXiv Detail & Related papers (2025-06-24T14:56:55Z) - MRGen: Segmentation Data Engine for Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically important imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize data, for training segmentation models for underrepresented modalities.<n>We present MRGen, a data engine for controllable medical image synthesis conditioned on text prompts and segmentation masks.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Synthesis-based Imaging-Differentiation Representation Learning for
Multi-Sequence 3D/4D MRI [16.725225424047256]
We propose a sequence-to-sequence generation framework (Seq2Seq) for imaging-differentiation representation learning.
In this study, not only do we propose arbitrary 3D/4D sequence generation within one model to generate any specified target sequence, but also we are able to rank the importance of each sequence.
We conduct extensive experiments using three datasets including a toy dataset of 20,000 simulated subjects, a brain MRI dataset of 1,251 subjects, and a breast MRI dataset of 2,101 subjects.
arXiv Detail & Related papers (2023-02-01T15:37:35Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - One Network to Solve Them All: A Sequential Multi-Task Joint Learning
Network Framework for MR Imaging Pipeline [12.684219884940056]
A sequential multi-task joint learning network model is proposed to train a combined end-to-end pipeline.
The proposed framework is verified on MRB dataset, which achieves superior performance on other SOTA methods in terms of both reconstruction and segmentation.
arXiv Detail & Related papers (2021-05-14T05:55:27Z) - Three-Dimensional Embedded Attentive RNN (3D-EAR) Segmentor for Left
Ventricle Delineation from Myocardial Velocity Mapping [1.8653386811342048]
We propose a novel fully automated framework incorporating a 3D-UNet backbone architecture with Embedded multichannel Attention mechanism and LSTM based Recurrent neural networks (RNN) for the MVM-CMR datasets.
By comparing the baseline model of 3D-UNet and ablation studies with and without embedded attentive LSTM modules and various loss functions, we can demonstrate that the proposed model has outperformed the state-of-the-art baseline models with significant improvement.
arXiv Detail & Related papers (2021-04-26T11:04:43Z) - Longitudinal diffusion MRI analysis using Segis-Net: a single-step
deep-learning framework for simultaneous segmentation and registration [10.548643411475584]
Segis-Net is a single-step deep-learning framework for longitudinal image analysis.
We applied Segis-Net to the analysis of white matter tracts from N045 longitudinal brain datasets of 3249 elderly individuals.
arXiv Detail & Related papers (2020-12-28T13:48:21Z) - Multi-Temporal Convolutions for Human Action Recognition in Videos [83.43682368129072]
We present a novel temporal-temporal convolution block that is capable of extracting at multiple resolutions.
The proposed blocks are lightweight and can be integrated into any 3D-CNN architecture.
arXiv Detail & Related papers (2020-11-08T10:40:26Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.